

Vehicle Solutions Group

Qt 5.12.2 User’s Guide

Linux and Windows

Revision D

2 Grayhill

Table of Contents

1. Introduction ... 4

1.1 Purpose .. 4

1.2 Acronyms and Definitions .. 5

1.3 References ... 5

1.4 Revision History ... 5

2. Requirements .. 6

2.1 Hardware ... 6

2.1.1 Supported Grayhill Display Hardware.. 6
2.1.2 Recommended Equipment .. 7

2.2 Software ... 7

2.2.1 Qt 5.12.2 Installer ... 7
2.2.2 Grayhill Qt Support Files .. 7
2.2.3 Windows Utilities ... 7

3. Installation... 8

3.1 Install the Development Kit... 8

3.2 Download and Install Qt Creator .. 8

3.3 Windows Utilities .. 22

3.3.1 Download and Install PuTTY ... 22
3.4 Configuring 3Dxx Display’s IP Address .. 23

3.4.1 Linux ... 23
3.4.2 Windows ... 25
3.4.3 Verification of Established Session .. 27
3.4.4 Configure IP address ... 28

Linux ... 28

Windows ... 29

3.5 Download and Install Support Files .. 32

3.5.1 Linux ... 32
3.5.2 Windows ... 33

3.6 Build and Run 3Dxx Embedded Application ... 37

3.6.1 Launch Qt Creator... 37
Linux ... 37

Windows ... 38

3.6.2 Open project .. 39
Linux ... 39

Grayhill 3

Windows ... 39

3.6.3 Build Project ... 41

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays 44

Appendix B: Configuring a 3Dxx Project .. 61

Appendix C: Debugging ... 75

Appendix D: Setting up a 3Dxx Qt Program to Run at Boot Up 79

Appendix E: Interfacing 3Dxx Hardware from QT Software 81

Appendix F: Setting 3Dxx Flash File System R/W Mode 114

Appendix G: Building Qt Library Source (optional) ... 115

Appendix H: Dynamic IP Address.. 116

Appendix I: Static IP Address .. 117

4 Grayhill

1. Introduction

1.1 Purpose

This document describes:

• Setup and usage of the Qt-based development environment for Grayhill
3Dxx display products

• Code development for a 3Dxx Display product in the Qt IDE

• Accessing various 3Dxx hardware features via this code

• Loading developed application code onto a 3Dxx Display product

The Qt cross-platform development environment runs under both Linux and

Windows 10. The Linux platform is supported by a virtual machine using Oracle’s

VirtualBox (https://www.virtualbox.org/wiki/VirtualBox) software.

The virtual machine is Ubuntu 16.04 using gnome flashback for the desktop;

additionally PuTTY (telnet client software - https://www.putty.org) is installed.

The VM also comes with Qt Creator and libraries installed.

For Virtual Machine installation, please reference “Virtual Machine Installation

Using VirtualBox”, which is available on the Grayhill web site

(https://www.grayhill.com/qt43d)

This document is intended for use by software developers familiar programming

in C/C++ using the Qt framework. Experience developing applications for Linux

platforms is a definite plus.

Screen shots try to be as accurate as possible and are provided as reference.

N.B. Screen images are mixed between the Windows version of Qt Creator and

Linux, but the steps are the same.

Note: Qt is licensed under the terms of LGPL and GPL. These are open-source

licensing agreements. Please reference https://www.qt.io/qt-licensing for a

detailed explanation. Additional information is also located at

https://www.gnu.org/licenses/licenses.html.

https://www.virtualbox.org/wiki/VirtualBox
https://www.grayhill.com/qt43d
https://www.qt.io/qt-licensing
https://www.gnu.org/licenses/licenses.html

Grayhill 5

1.2 Acronyms and Definitions

3Dxx Reference to any of the Grayhill 3D series displays

(3D50, 3D70, 3D2104, 3D101)

CAN Controller Area Network

GB Giga Byte

RAM Random Access Memory

USB Universal Serial Bus

VM Virtual Machine

1.3 References

[1] VSTN2021-01 Linux - Upgrade existing Qt 5.9.3 Libraries to Qt

5.12.2

[2] VSTN2021-02 Windows 10 - Upgrade existing Qt 5.9.3 Libraries

to Qt 5.12.2

[3] VSUD2019-02 Virtual Machine Installation Using VirtualBox

1.4 Revision History

Revision Author Date Description
A K. Struss 9/6/2019 Initial Release combining the previous

independent Linux and Windows manuals

B K. Jalowiec 11/18/2020 Added model 3D101 display

C K. Jalowiec 10/12/2021 Corrected libghio references

D K. Jalowiec 11/04/2025 Updated web links

6 Grayhill

2. Requirements

2.1 Hardware

2.1.1 Supported Grayhill Display Hardware

The Qt-based development environment supports the following Grayhill

3Dxx Color Display Models:

• 3D50

• 3D70

• 3D2104

• 3D101

The table below summarizes the key features of each of these models. Note

that the features of a specific product may vary depending on the purchased

hardware configuration.

Model Number 3D50-x00 3D70-x00 3D2104-x00 3D101-200
Display Size (inches) 5 7 10.4 10.1

Pixel Count (w x h) 800 x 480 800 x 480 1024 x 768 1280 x 800

Touch Screen Input Yes Yes Yes Yes

Real Time Clock Yes Yes Yes Yes

CAN Ports 2 2 3 3

Camera Inputs 2 3 4 4

USB ports
1
(maintenance
only)

1
(maintenance
only)

1
(maintenance
only)

1
(maintenance
only)

RS232
1
(maintenance
only)

1
(maintenance
only)

1
(maintenance
only)

1
(maintenance
only)

Built-in Ethernet 0 1 1 1

Digital Input (dedicated) 1 4 0 0

Digital Output (dedicated) 1 4 0 0

Digital Input / Output 3 0 4 4

Analog Input 0 2 0 0

Audio Output No 1 channel No No

Buzzer No Yes Yes Yes

In order to use Qt 5.12.2 on Grayhill 3Dxx display models running the Linux

3.0.35 kernel, the April 28, 2017 version or later of the 3.0.35 kernel MUST

be installed.

Supported Linux OS software for the 3Dxx displays is available for

download on the Grayhill web page:

https://www.grayhill.com/3d-series-displays

https://www.grayhill.com/3d-series-displays

Grayhill 7

2.1.2 Recommended Equipment

It is strongly recommended the associated development kit be used for

development.

• 3D50DEV-100 3D50 Development Kit

• 3D70DEV-100 3D70 Development Kit

• 3D2104DEV-100 3D2104 Development Kit

• 3D101DEV-200 3D101 Development Kit

PC Running Windows 10 with the following minimum configuration:

• 4 GB RAM (minimum)

• 10/40 (VM) GB available hard drive space (minimum)

• Ethernet (RJ45) port (or USB adapter)1

• RS232 Port (or USB to serial adapter)

• Internet Access

2.2 Software

The following software packages are available online

2.2.1 Qt 5.12.2 Installer

https://download.qt.io/archive/qt/5.12/5.12.2/

2.2.2 Grayhill Qt Support Files

https://www.grayhill.com/qt43d

• QtGhInstall5122Linux

• QtGhInstall5122Win10.exe

• Virtual Machine Appliance (optional)

2.2.3 Windows Utilities

• Notepad++ (https://notepad-plus-plus.org/)
• PuTTY (https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)

1 An Ethernet port connected to a DHCP server connected to the 3Dxx display. This port
should be on the same network as the development PC.

https://download.qt.io/archive/qt/5.12/5.12.2/
https://www.grayhill.com/qt43d
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

8 Grayhill

3. Installation

This is a brief overview of the installation steps for the Qt-based development

environment for Grayhill 3Dxx displays.

• Connect the 3Dxx Development Kit hardware to the PC

• Qt Creator for Windows is downloaded and installed on the development
PC

• Optional third-party utilities are downloaded, installed, and configured
(Windows)

• The serial and Ethernet links to the target 3Dxx display hardware are
established.

• Grayhill support files are downloaded and installed

• A script is run to configure the target 3Dxx display board

• Instructions on how to open and run a Qt demonstration project on the
3Dxx display target hardware or desktop environment. This demonstration
project illustrates:

o using touch screen “buttons”
o using touch screen swipes
o setting the 3Dxx backlight
o operating the 3Dxx camera input
o accessing and setting the real time clock

If a VM is going to be the development environment, it must be installed

now. See [3] for complete instructions and configuration.

For VM installation, the procedure continues at 3.4 Configuring 3Dxx Display’s IP

Address.

3.1 Install the Development Kit

Connect the serial port and Ethernet port interfaces. The 3D50 display procedure

is described in the document “3D50DEV Quick Start Guide.pdf” and the 3D70 in

“3D70DEV Quick Start Guide.pdf”

3.2 Download and Install Qt Creator

N.B. This section is mandatory for Windows users. The Linux VM comes with

Qt Creator pre-installed.

In this section, the Qt on-line installer will be downloaded and executed to

download and install files from Qt. Once all the files are downloaded, Qt will be

installed.

Grayhill 9

• Using your favorite web browser:
https://download.qt.io/archive/qt/5.12/5.12.2/

• scroll down and click “Go open Source”

• scroll down and click “Download”

• After the file downloads, open the downloads folder and double click on
the file to execute the installer. If a “Security Warning” similar to the below
appears, click “Run”

https://download.qt.io/archive/qt/5.12/5.12.2/

10 Grayhill

• Click Next

Grayhill 11

• Create an account, if desired – otherwise click “Skip”

12 Grayhill

• If an account was created click “Next” – otherwise this screen will not
appear

Grayhill 13

• Whether “Skip” or an account was created, installation continues here

• Click “Next”

14 Grayhill

Grayhill 15

• Click “Next”

N.B. Due to the nature of Qt and the way it stores configuration information,

Qt must be installed in C:\Qt.

16 Grayhill

• Expand Qt → Qt 5.12.2

• Select “MinGW 7.3.0 32bit”

• Click “Next”

Grayhill 17

• If accepting of the license agreement select “I have read…”

• Click “Next”

Note: Qt is licensed under the terms of LGPL and GPL; these are open-

source licensing agreements. Please reference https://www.qt.io/qt-

licensing for a detailed explanation. Additional information is also located at

https://www.gnu.org/licenses/licenses.html.

https://www.qt.io/qt-licensing
https://www.qt.io/qt-licensing
https://www.gnu.org/licenses/licenses.html

18 Grayhill

• Click “Next”

Grayhill 19

• Click “Install”

20 Grayhill

Grayhill 21

• Unselect “Launch Qt Creator”

• N.B. Qt Creator does not know the IP address of the target board at this

time; the target board’s IP address will be discovered and configured later.
Any time the IP address of the display changes, Qt Creator must be re-
launched if using the /etc/hosts file for IP address resolution.

• Click “Finish”

22 Grayhill

3.3 Windows Utilities

3.3.1 Download and Install PuTTY

The examples shown in this document reflect the use of PuTTY. Feel free to

substitute a different client.

• Download Putty

• Open the downloads folder and double click to execute the PuTTY
installer

• Follow the installation instructions – connection configuration is described
later in the document

Grayhill 23

3.4 Configuring 3Dxx Display’s IP Address

In order to complete the setup of the Qt development environment for the 3Dxx

Display hardware, the IP address assigned to the 3Dxx Display must be

determined.

In order to perform these tasks, it is necessary to connect the 3Dxx Display to the

same network as the development PC.

• Connect the 3Dxx display serial port to a serial port on the development
PC

• Determine the serial port device name to use for PuTTY (serial
communication between the physical PC and the target)

3.4.1 Linux

This depends on how the 3Dxx Display serial port is physically connected to the

development PC. If using a built-in serial port on the development PC, the serial

port device name is “/dev/ttyS0”. If using a USB to serial port adapter, the serial

port device name is “/dev/ttyUSB0”.

Only if using the USB to serial port adapter: it must be activated at this time by

clicking on the “Devices” menu option at the top of the VirtualBox screen. Select

“USB” and click on the USB to serial port adapter device name in order to select

it. A sample is shown here (the USB device name may be different than shown):

The Linux VM comes with PuTTY pre-installed, so minimal configuration is

required. The “Serial line” value may need to be updated based on the above

connecter.

• Launch PuTTY, the “PuTTY Configuration” screen appears

24 Grayhill

o Select COM1

o Click “Load”

o Click “Open”

Grayhill 25

3.4.2 Windows

• Launch PuTTY, the “PuTTY Configuration” screen appears configure as
follows:
o Select the “Serial” button

o Set “Serial line” to appropriate COM Port

o Change the “Speed” to 115000

o Enter a name in “Saved Sessions” (e.g. comPort1)

o Click “Save”

N.B. If “Open” is clicked any unsaved configuration modifications are lost!

26 Grayhill

o Click on “Data”

o Set “Auto-login username” to “root”

Grayhill 27

o Click back on “Session”, then click “Save” again

o Lastly, click “Open” to establish a connection

3.4.3 Verification of Established Session

Make sure that the 3Dxx display is powered up and press the “Enter” key

(Linux on left, Windows on right)

28 Grayhill

• A “ghiimx6 login:” prompt should appear. If the 3Dxx display was just

powered up, startup messages may appear as well, but when they are
done, pressing the “Enter” key should produce a “ghiimx6 login:”

prompt as shown.

• At the “ghiimx6 login:” prompt enter “root” (no password is required)

• Depending on the IP address type, refer to the appropriate appendix:

o Dynamic Appendix H: Dynamic IP Address

o Static Appendix I: Static IP Address

3.4.4 Configure IP address

Create an alias for the display’s IP address to be referenced by the host

computer.

N.B. If the IP address of the display changes, hosts must be updated and

Qt Creator re-launched.

Linux

• Launch a Terminal Command Window

• In the terminal window type the following command:
o gedit2 /etc/hosts

• Update the IP address associated with “gmd”

• Click “Save”; then close the editing session

2 vi is also available as a text editor if preferred

Grayhill 29

Windows

• Open Windows Explorer window (<Window>-e)

• Navigate to C: → Windows → System32 → drivers → etc and select
“hosts”

30 Grayhill

Grayhill 31

• Right click to edit the file using your favorite flavor of editor (Screenshot
illustrates Notepad++)

• After the editor is launched, Windows Explorer can be closed

• Add the IP address and “gmd” as illustrated below:

• Save the file

N.B. The editor may ask to restart in admin mode; allow it to continue as

hosts is a system file

32 Grayhill

3.5 Download and Install Support Files

This section details downloading and installation of the necessary Qt support

files. It also describes configuration of the host machine and 3Dxx display for

operation with the Qt development environment. The scripts work for all display

models 3D50, 3D70, 3D2104, and 3D101.

• Launch an internet browser

• Navigate to https://www.grayhill.com/qt43d

3.5.1 Linux

N.B. Firefox can be launched from Applications → Internet

• Download QtGhInstall5122Linux

• Copy/move the downloaded file to /home/ghguest

• Open a terminal window and cd to home (cd)

• Make QtGhInstall5122Linux executable (it should already be executable)
o chmod 755 QtGhInstall5122Linux

• Unarchive the files (self-extracting archive)
o ./QtGhInstall5122Linux

• Make installation script executable
o chmod 755 QtGhInstallLinuxInstall

• Install Qt support files on display
o ./QtGhInstallLinuxInstall

The above script without any arguments defaults to updating both the VM

and the display. To update additional displays, connect the 3Dxx and

update gmd (see previous section) with the IP address then re-run the

installation script to configure the display.

• ./QtGhInstallLinuxInstall 3dxx
The script reboots the display and requires a few minutes to complete

execution. If everything works correctly these are the last few lines:

setup3Dxx completed successfully... rebooting

Wed Apr 4 13:34:24 CDT 2018

If a message similar to this does not appear, the problem(s) must be

corrected before continuing.

The following files/directories are created on the VM:

• GrayhillDisplayPlatform <dir> sysroot for cross-compiling

• GrayhillExamples <dir> sample projects

https://www.grayhill.com/qt43d

Grayhill 33

• QtGhInstallLinuxInstall <file> installation script (re-run for additional
displays)

• targetFiles <dir> files copied/installed to the 3Dxx

3.5.2 Windows

• Download “Qt Creator Windows Support Files” from the Grayhill website

• Open the download folder and double click on
“QtGhInstall5122Win10.exe”

• A User Account Control window may pop-up
o Click “Yes” to allow the self-extracting zip file to proceed

• The following window appears

o Click “Yes”

34 Grayhill

• Using Windows Explorer, navigate to “C: QtGhSupport” and verify the
folder was installed

• Double click on “QtGhInstallWinInstall.bat” to configure the display

Grayhill 35

36 Grayhill

• Restore any custom modifications. The setup script preserves files by
appending a timestamp

Grayhill 37

3.6 Build and Run 3Dxx Embedded Application

This section details how to build and run a demo application.

A Qt QML demonstration project is provided which runs (configured as

necessary) on each of the 3Dxx displays as well as the host machine.

Complete configuration instructions are in the appendices.

3.6.1 Launch Qt Creator

Linux

Launch Qt Creator using one of the following methods:

• Select “Applications” (upper left-hand corner of the Linux window), then
navigate through “Programming” and click on “Qt Creator …”

38 Grayhill

• Click on the Qt icon in the panel

• Double click on the Qt icon on the desktop

Windows

• Launch Windows Explorer (<Windows>-e)

• Navigate to C: → Qt → Tools → QtCreator → bin → qtcreator.exe

• Right click to select options like
o “Pin to Taskbar”

Grayhill 39

o “Send to” → Desktop (create shortcut)

• Double click to launch Qt Creator

3.6.2 Open project

• Select “Projects”

• Click on “Open Project” (“Welcome” should be automatically selected on
launch)

• Navigate to the desired project

Linux

/home → GrayhillExamples → ghQmlDemo4115

Windows

C: → QtGhSupport → GrayhillExamples → ghQmlDemo4115

40 Grayhill

• Select ghQmlDemo4115.pro

• Click “Open”

• If a similar box appears, click “Yes”

• If a similar box appears, click “OK”. Refer to Appendix B: Configuring a
3Dxx Project before continuing. The current project configuration file is
not compatible with the current version of Qt Creator and the project’s
settings need to be re-configured.

Grayhill 41

3.6.3 Build Project

• Select “Projects” view

• Select “Build” under “Qt-5.12.2-3Dxx”3

• Expand qmake

• Verify qmake “Additional arguments:” is set to:
 “hw_present=yes target=3D70 kernel=4”.

N.B. – for the target argument, use 3D70, 3D50, 3D2104, or 3D101

based on actual display.

N.B. – the kernel=4 argument is used for 3Dxx display models running

linux kernel 4.1.15

N.B. – the hw_present argument must not be present for Desktop builds

N.B. – for Windows builds of the demo, the additional argument

windowsOnly=true needs to be set

3 To build for the desktop select “Build” under “Desktop” …. Certain features are not
supported (e.g. Camera)

42 Grayhill

• Click on the green arrow to run (a check to see if the executable is up to
date is performed; if compilation is necessary the output can be viewed by
clicking on the “Compile Output” tab)

Grayhill 43

• Select the “Application Output” tab

• Click the red (when application is running on target) square to terminate
the target session

44 Grayhill

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays

N.B. This appendix is included for reference and is not a required installation

step. Grayhill automatically installs the kit configuration as part of the support file

installation. A kit is a collection of utilities (qmake, compilers, debugger, etc…)

used to build a project.

• Launch Qt Creator

• Select Tools → Options

Alternatively, “Manage Kits” can be selected from the “Projects” view.

Grayhill 45

General

The “General” tab is where project wide customization is done. Review and

select the desired configuration.

• Select “Build & Run”

• Select “General” tab

• Click “Apply” to continue and select other tabs, “OK” if finished

46 Grayhill

Device

The section describes how to establish an Ethernet based connection to the

display.

• Select “Devices”

• Click “Add…”

.

Grayhill 47

• Select “Generic Linux Device”

• Click “Start Wizard”

48 Grayhill

• Populate the fields as illustrated above

• N.B. The IP address associated with gmd is located in /etc/hosts (Linux)

and C:\Windows\System32\drivers\etc (Windows)

• Click “Next”

Grayhill 49

• Verify the 3Dxx Display is still powered up

• Click “Finish” – The Ethernet link to the 3Dxx Display will be tested and if
successful the following result screen appears

• Click “Close”

50 Grayhill

• Click the upper arrow on the right side of the “Timeout:” box to increase
timeout value to “20s”

Grayhill 51

Devices Summary

• Name name of the device
• Host name gmd alias -- specified in hosts

• Timeout 20s
• Username root

N.B. Remember verify connectivity using “Test”

52 Grayhill

Compiler

Select “Build & Run”

Select “Compilers” tab

Click “Add”; then select GCC → C

Populate the fields as illustrated

• “Name:” ARM-GCC

• “Compiler path:” Click “Browse…” and navigate to the desired file

o /opt/OSELAS.Toolchain-2013.12.3/arm-cortexa9-linux-gnueabi/gcc-

4.8.3-glibc-2.18-binutils-2.24-kernel-3.12-sanitized/bin/arm-cortexa9-
linux-gnueabi-gcc

Grayhill 53

o C:\QtGhSupport\gcc-linaro-2013\bin\ arm-linux-gnueabi-gcc.exe

Click “Open”

“ABI:” Select “arm-linux-generic-elf-32bit”

 The configuration portion of the screen should look similar to:

54 Grayhill

Repeat the above steps for GCC→C++

Click “Apply”

Grayhill 55

Debugger

Select the “Debuggers” tab

Click “Add”

Populate the fields as illustrated

• “Name:” 3Dxx Target Debugger

• “Path:” Click “Browse…” and navigate to the desired file (should be
previous directory)
o /opt/OSELAS.Toolchain-2013.12.3/arm-cortexa9-linux-gnueabi/gcc-

4.8.3-glibc-2.18-binutils-2.24-kernel-3.12-sanitized/bin/arm-cortexa9-
linux-gnueabi-gcc

o C:\QtGhSupport\debugger\arm-linux-gnueabi-gcc.exe

• Click “Open”; the configuration portion of the screen should look similar to

56 Grayhill

• Click “Apply”

Grayhill 57

qmake

Select the “Qt Versions” tab

Click “Add” (Select a qmake Executable dialog box appears, still referencing the

last path)

Navigate to the qmake version associated with the library

o /usr/local/Qt-5.12.2-3Dxx/bin/qmake

o C:\QtGhSupport\qmakeInsatll\bin\qmake.exe

• Click “Open”

58 Grayhill

• Update “Version name:” to “Qt-5.12.2-3Dxx”

Kit

Select the “Kits” tab

Click “Add”

Populate the fields as illustrated

• “Name:” Qt-5.12.2-3Dxx

• “Device type:” Select “Generic Linux Device” from the pick list
N.B. Automatically updates Device

• “Sysroot”: Click “Browse…” and navigate to desired path
o /home/ghguest/GrayhillDisplayPlatform/sysroot-target

Grayhill 59

• Click “Open”
o C:\QtGhSupport\GrayhillDisplayPlatform\sysroot-target

• Click “Select Folder”
“Compiler: C:” Select “ARM-GCC” from the pick list

“Compiler: C++:” Select “ARM-G++” from the pick list

“Debugger:” Select “3Dxx Target Debugger” from the pick list

“Qt version:” Select “Qt-5.12.2-3Dxx” from the pick list

60 Grayhill

N.B. The selected names must match those used when creating the

various kit sub-components

Summary

• Verify contents are correct

• Click “OK”
Now that a Qt kit is configured, it is possible to develop, build, test, debug,

run and enjoy Qt applications.

Grayhill 61

Appendix B: Configuring a 3Dxx Project

The Grayhill support package contains 2 sample demo projects:

• GrayhillExamples/ghQmlDemo (linux kernel 3.0.35)

• GrayhillExamples/ghQmlDemo4115 (linux kernel 4.1.15)

Demo project ghQmlDemo is intended for the -100 Series of 3D50, 3D70, and

3D2104 displays running linux kernel 3.0.35.

Demo project ghQmlDemo4115 is intended for the -200 Series of 3D50, 3D70,

3D2104, and 3D101 displays running linux kernel 4.1.15.

This section details how to setup and configure the ghQmlDemo4115

example project for the target (3Dxx).

N.B. This appendix is included for reference and is not a required installation

step; Grayhill automatically configures the project as part of the support file

installation.

If not already running, launch Qt Creator. (See

62 Grayhill

Build and Run 3Dxx Embedded Application)

Open a project from “Qt Creator” main window click on “Open Project” button.

N.B. If present, a previous project can be opened by clicking on the project

name listed below “Recent Projects”.

Grayhill 63

• An “Open File” dialog window will appear

• Navigate to the 3Dxx Demo project’s “.pro” file for either Linux or Windows
as illustrated below
o /home/GrayhillExamples/ghQmlDemo4115

o C:\QtGhSupport\GrayhillExamples\ghQmlDemo4115

• Click “Open”

64 Grayhill

If the “project.pro.user” file is missing, which is normal if the project has never

been opened before, a “Configure Project” dialog appears. If this dialog doesn’t

appear, proceed to where the “Projects” icon is selected.

If the “Configure Project” dialog appears (remember screen shot illustrations are

for reference purposes and may not reflect current observations)

“Desktop Qt 5.12.2 GCC 64bit”

For Linux:

• Expand by clicking on “Details”
o Unselect “Release”

o Unselect “Profile”

For Windows:

• Expand by clicking on “Details”
o Unselect “Debug”

o Unselect “Profile”

N.B. It is recommended that for Windows Desktop builds, ‘Debug’ configuration
not be used. An issue has been observed when running the Debug configuration
in which a "Cannot load library" error for qtquickcontrolsplugind.dll has occurred.
The demo project has been configured with the Debug build removed.

Grayhill 65

“Qt-5.12.2-3Dxx”

• Expand by clicking on “Details”

• Select “Qt-5.12.2-3Dxx” (this selection will select the three boxes below)
o Unselect “Release”

o Unselect “Profile”

Linux Reference

66 Grayhill

Windows Reference

• Click “Configure Project”

Grayhill 67

• On the main “Qt Creator” window select “Projects”

If the desired kit is not shown see

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays

N.B. Clicking “Manage Kits” is the same as selecting “Tools → Options”

“Active Project” is a drop down pick list with the active project shown.

“Build & Run” lists the available kits.

N.B. The selected kit is emphasized in bold. A kit (set of utilities) is how the

project will be built, e.g. the main kit difference between desktop and target is the

compiler as the Qt-5.12.2-3Dxx kit uses a cross compiler for the display.

N.B. Clicking on an actual kit name selects either Build or Run (depending on

which one was previously selected)

68 Grayhill

Build

This section describes how to configure the ghQmlDemo4115 example project

for the target (3Dxx).

• Select “Build”

• Expand the Details tab associated with qmake (under Build Steps)

• “Additional arguments”
o Enter “hw_present=yes target=3D70 kernel=4”

N.B. This is a case sensitive field.

N.B. Parameters are automatically added to the “effective qmake call” command

syntax. This field is configured based on the actual target hardware display size.

The processing of these arguments is in the .pro file for the project.

The above image also shows two custom steps, the first used for versioning and

the second for camera configuration.

Kernel 4.1.15 supports multiple camera views on the 3D70, 3D2104, and 3D101.

Grayhill 69

The camera configuration for demo project ghQmlDemo4115 is given in the

cfgTarget custom step by specifying one of the following for Arguments:

• single (only 1 camera can be selected for display)

• multi (2 cameras can be displayed simultaneously)

Windows Reference

Build Steps

• Additional arguments (see Linux screen capture above)

• Override make → C:\Qt\Tools\mingw730_32\bin\mingw32-make.exe

70 Grayhill

Clean Steps

• Override make → C:\Qt\Tools\mingw730_32\bin\mingw32-make.exe

Build Environment

• Path Append ;C:\Qt\5.12.2\mingw730_32\bin

N.B. An issue has been observed when using Qt Creator for Windows where the
compile will fail with an error similar to:

This issue has been observed with Qt Creator running on Windows; it has not been
observed with Qt Creator running on the Linux VM.

At the time of this document writing, a solution has not been found, as the issue
appears to be with tools not controlled by Grayhill.
However, Grayhill has found the following potential (albeit temporary) workarounds that
will usually eliminate the error and get the compile working again:

• Reboot the development PC
-OR-

• Uninstall and re-install Qt

Grayhill 71

Run/Deployment

This section describes how to compile and deploy the example project to the

target (3Dxx).

• Select “Run”

• Deployment
o Method: Deploy to Remote Linux Host (default)

o Files to deploy:

Local File Path location on host (auto-populated)

Remote Directory location on target (auto-populated)

N.B. File information may not populate until after a build is done.

• Expand “Details” for “Upload files via SFTP”

• Make sure neither box is selected

N.B. On rare occasions, Qt Creator thinks the files have already been deployed

and will not re-send the files to the target; disabling this functionality avoids the

situation.

72 Grayhill

• Save! File → Save All

Grayhill 73

• Build options

Build Let Qt Creator decide what is out of date

Rebuild Force Qt creator to re-compile everything

Clean Remove existing artifacts generated by previous builds

Run Deploy the executable to the target and execute the image

74 Grayhill

• Build and Run the image for the target by clicking the green triangle

The bottom ribbon of Qt Creator has various panes (views) that can be

examined. “Application Output” is shown; this pane is also where qDebug

messages will be output.

Click the paintbrush icon to clear the contents.

Click the red square to terminate the target session.

N.B. Errors and issues are summarized in the “Issues” tab.

Grayhill 75

Appendix C: Debugging

Let’s face it, code never initially does what it is supposed to do, but rather what it

was told to do! Luckily, Qt Creator has a built-in debugger!

N.B. In order to debug QML, then file(s) must be listed in the QML folder. If they

are not, then check to make sure qtquickcomplier is not set in the .pro file. Also

verify that “Enable Qt Quick Compiler” is not checked in Build for qmake step.

Additional debugging information can be found by Googling “qt debugging” which

includes the following link.

https://doc.qt.io/qtcreator/creator-debugging.html

Debugger stepping option icons (Mouse over the icons for a description)

• Continue

• Stop

• Step Over <F10>

• Step In <F11>

• Step Out <Shift>+<F11>

The debugger toolbar icon’s functions are also available under the Debug drop

down menu.

https://doc.qt.io/qtcreator/creator-debugging.html

76 Grayhill

• Load ghQmlDemo4115

• Select the “Edit” view

• Expand contents of ghQmlDemo4115 → QML → qml

Grayhill 77

• Select “LightingForm.qml”

• Add a breakpoint by left clicking in the gutter at line 36 (tractor.source =
…)

• Verify building for target and configuration parameters are set

• Click Green triangle with cute little bug!

The code begins to execute once compiled (the project may re-compile) and then

hits the breakpoint. This happens during the initial loading of the form.

Press <F5> to Continue (or click on continue icon in the Debugger bar).

• Select the lighting screen

• Click on the 8th lighting level

78 Grayhill

• Execution will stop (the display will not update, as the breakpoint is at the
point where the lighting level image is loaded)

• Expand “this” and scroll down to value to see the new value

Grayhill 79

Appendix D: Setting up a 3Dxx Qt Program to Run at Boot Up

This section describes how to configure a program to automatically execute at

boot up.

• Open a terminal window on the 3Dxx dsisplay (Error! Reference source n
ot found. describes how to launch “PuTTY”)

• Create4 a launch script for the desired application

 Explanation

cd /etc/init.d change into proper directory
echo “#! /bin/sh –l treat as login (runs profile)
/opt/ghQmlDemo/bin/ghQmlDemo &” > launchQtApp

 spawn application process
cat launchQtApp verify contents
chmod 755 launchQtApp make script executable

4 vi (text editor) can also be used for those familiar with vi, instead of the command line

80 Grayhill

• Create a link to the launch script created above

 Explanation

cd /etc/rc.d set into proper directory
ln –s /etc/init.d/launchQtApp S12qtApp create soft link to executable file
ls –l S12qtApp verify link creation

N.B. Do not try to launch multiple Qt applications at boot up or try to launch the

ghvehicleapp application along with a Qt application as they conflict with one

another.

N.B. When switching from running one application to another, even between Qt

applications, it is a good idea to do a reboot of the 3Dxx Display in between to

make sure that the hardware is properly reset. This can be done by entering the

“reboot” command on the 3Dxx Display Linux console.

Grayhill 81

Appendix E: Interfacing 3Dxx Hardware from QT Software

This section explains how to access the functionality of these components. The

programming interfaces and provided API functions are covered, with the syntax

and parameters defined. Sample code is also provided where appropriate.

The 3Dxx Display contains the following custom component interfaces:

• Analog Input driver (Model 3D70 only)

• Audio Output (Model 3D70 only)

• Buzzer (Models 3D70, 3D2104, 3D101)

• Camera driver

• CAN driver

• Digital I/O driver

• LCD

• LCD Backlight

82 Grayhill

Analog Inputs (Model 3D70 only)

The Model 3D70 Display has two analog inputs. Analog Input 1 is connected to

Pin 4 on Connector B and Analog Input 2 is connected to Pin 5 on Connector B.

The Analog Inputs can be used to read resistance, voltage, or current with

respect to the analog return pin (pin 7 on Connector B).

The following Grayhill files are required:

• ghiolib.h (header)

• libghio.so (linker)

Interface

A Qt application may configure or read an analog input pin by calling the

appropriate C library function as described below.

#define GHIOLIB_CH1 (0x01)

#define GHIOLIB_CH2 (0x02)

#define GHIOLIB_MAX_ANALOG_IN (2)

#define GHIOLIB_ANALOG_5V (0)

#define GHIOLIB_ANALOG_1500OHM (1)

#define GHIOLIB_ANALOG_10V (2)

#define GHIOLIB_ANALOG_5000OHM (3)

#define GHIOLIB_ANALOG_20MA (4)

#define GHIOLIB_RET_OK 0

#define GHIOLIB_RET_ERROR 1

#define GHIOLIB_RET_NOTSUPPORTED 2

typedef struct _ADCVALUES

{

 uint16_t adcch;

 uint16_t adcvref;

 uint16_t adcstatus;

 uint16_t adcconfig;

} ADCVALUES, *PADCVALUES;

Grayhill 83

ghiolib_setADCcfg

This function configures an analog input for one of five different reading modes.

Syntax

int ghiolib_setADCcfg(int ch, uint8_t config);

Type Name in/out Description Values
int ch in Channel to

configure
GHIOLIB_CH1
GHIOLIB_CH2

uint8_t config in Channel
configuration

GHIOLIB_ANALOG_5V
GHIOLIB_ANALOG_10V
GHIOLIB_ANALOG_1500OHM
GHIOLIB_ANALOG_5000OHM
GHIOLIB_ANALOG_20MA

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

ghiolib_getADCin

This function reads a value from an analog input pin.

Syntax

int ghiolib_getADCin(int ch, PADCVALUES p);

Type Name in/out Description Values
int ch in Channel to read GHIOLIB_CH1

GHIOLIB_CH2

PADCVALUES P out Read value is returned in member “adcch” of this structure.
Other items in this structure can be ignored.

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

84 Grayhill

Sample Qt Code
#include <QDebug>

// For access to ghiolib

typedef u_int16_t uint16_t;

typedef u_int8_t uint8_t;

#ifdef __cplusplus

extern "C" {

#endif

#include "ghiolib.h"

#ifdef __cplusplus

}

#endif

int channel = 0;

ADCVALUES analogData;

int gpioStatus;

// Set analog input 1 to read 0 to 10 volts

gpioStatus = ghiolib_setADCcfg(channel + 1, GHIOLIB_ANALOG_10V);

if (GHIOLIB_RET_OK != gpioStatus)

{

 qDebug("ERROR (%d) doing ghiolib_setADCcfg on channel: %d\n",

 gpioStatus, channel + 1);

}

// Get current reading

gpioStatus = ghiolib_getADCin(channel + 1, &analogData);

if (GHIOLIB_RET_OK != gpioStatus)

{

 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel: %d\n",

 gpioStatus, channel + 1);

}

qDebug("Reading from channel %d is %d millivolts\n", channel + 1,

analogData.adcch);

Grayhill 85

Audio Output (Model 3D70 only)

The Model 3D70 Display has the ability to play an mp3 audio file and send the

audio output to a monaural line out (pins 1, AUDIO OUT, and 2, AUDIO RET, on

the B connector).

There are no required header or linker files, but the mpg123 application must be

installed on the display and its location be in the search PATH.

Interface

A Qt application can start playing an mp3 audio file and can stop the playing of

the audio file using a Linux utility called mpg123.

Sample Qt Code
//

// To play mp3 file “sounds.mp3”

//

// Note that by placing mp3 file in “images” folder, Qt will

// automatically download the mp3 file to the target with the

// other image files being used.

//

// Command shown to play mp3 file will first stop playing any mp3 //

file that may already be playing.

//

system("test `pidof mpg123` && kill `pidof mpg123` ;"

 "mpg123 -q images/sounds.mp3 &");

// To stop playing mp3 file (if any)

system("test `pidof mpg123` && kill `pidof mpg123`");

86 Grayhill

Buzzer (Models 3D70, 3D2104, 3D101)

The Model 3D70, 3D2104, and 3D101 Displays have an internal buzzer that can

be sounded on command.

There are no additional required files.

Interface

A Qt application can turn the internal buzzer on or off by sending the proper

number to the buzzer control file.

Sample Qt Code
#include <QString>

#include <QDebug>

QFile buzzerFile;

bool buzzerFileOpen;

buzzerFile.setFileName("/sys/class/backlight/pwm-

backlight.3/brightness");

buzzerFileOpen = buzzerFile.open(QIODevice::WriteOnly |

QIODevice::Text);

if (false == buzzerFileOpen)

{

 qDebug("Error opening buzzer file\n”);

}

// To turn buzzer ON

if (true == buzzerFileOpen)

{

 QTextStream buzzerOut(&buzzerFile);

 buzzerOut << 10;

}

// . . .

// To turn buzzer OFF

if (true == buzzerFileOpen)

{

 QTextStream buzzerOut(&buzzerFile);

 buzzerOut << 0;

}

Grayhill 87

Camera Driver Interface (Single camera)

The following describes the camera driver interface that is used with the 3.0.35

kernel. This interface allows only one camera input to be active at a time.

This interface can be used with the 4.1.15 kernel; however, for new designs it is

recommended that the multi-camera interface described later is used with display

models running the 4.1.15 kernel.

The Grayhill 3Dxx Display device can contain multiple camera inputs. NTSC and

PAL format video inputs are supported by modifying the camera input sensor

parameters. The camera output can be displayed on the LCD. The following camera

display parameters can be modified:

• Window parameters – window size and window position

• Color parameters – brightness, contrast, saturation and hue

• Rotation

• Input sensor parameters – provides support for NTSC and PAL formats

• Camera output to LCD foreground or background with color key

 Camera output is 30 frames per second (fps).

 The following Grayhill files are required:

• libghdrv.so (linker)

N.B. Only one camera input can be active at a time with kernel 3.0.35.

Kernel 4.1.15 will support multiple camera views on the 3D2104, 3D70, and 3D101.

88 Grayhill

Data Types
typedef struct _SENSORPARAMS // Must be set according to camera input

type

{ // NTSC PAL

 unsigned int top; // 4 5

 unsigned int left; // 0 4

 unsigned int height; // 480 567

 unsigned int width; // 640 640

} SENSORPARAMS, *PSENSORPARAMS;

#define FOREGROUND (1)

#define BACKGROUND (0)

#define FB_DEV_0 (0) // GRAPHICS being sent to /dev/fb0

#define FB_DEV_1 (1) // GRAPHICS being sent to /dev/fb1

//

// These are the only allowed values for VIDEO_COLOR_KEY_xxx

//

#define VIDEO_COLOR_KEY_BLACK (0x00000000)

#define VIDEO_COLOR_KEY_RED (0x00FF0000)

#define VIDEO_COLOR_KEY_GREEN (0x0000FF00)

#define VIDEO_COLOR_KEY_BLUE (0x000000FF)

#define VIDEO_COLOR_KEY_YELLOW (0x00FFFF00)

#define VIDEO_COLOR_KEY_CYAN (0x0000FFFF)

#define VIDEO_COLOR_KEY_MAGENTA (0x00FF00FF)

#define VIDEO_COLOR_KEY_WHITE (0x00FFFFFF)

typedef struct _DISPLAYPARAMS

{

 unsigned int top; // top left window y-coordinate

 unsigned int left; // top left window x-coordinate

 // (must be divisible by 4)

 unsigned int height; // window vertical size

 unsigned int width; // window horizontal size

 // NOTE: top + height must not exceed

 // height of display

 // and left + width must not exceed

 // display width

 unsigned int rotate; // 0-7, see below

 unsigned int fg; // FOREGROUND or BACKGROUND +

 // VIDEO_COLOR_KEY_xxx

} DISPLAYPARAMS, *PDISPLAYPARAMS;

Grayhill 89

The camera output always operates in native landscape mode. Use the following

rotation values to support other display and camera orientations:

Value Rotation

0 No rotation

1 Vertical flip

2 Horizontal flip

3 180

4 90 right

5 90 right with vertical flip

6 90 right with horizontal flip

7 90 left

#define HUE_CODE_00 (0x00)

#define HUE_CODE_7F (0x7F)

#define HUE_CODE_80 (0x80)

typedef struct _COLORPARAMS

{

 unsigned int brightness; // 0-255

 unsigned int saturation; // 0-255

 unsigned int hue; // HUE_CODE_00, HUE_CODE_7F, or

 // HUE_CODE_80

 unsigned int contrast; // 0-255

} COLORPARAMS, *PCOLORPARAMS;

90 Grayhill

Interface

The Qt application interfaces with the Camera driver using the Camera class.

Camera::Camera

Camera class constructor

Syntax

Camera:: Camera (int camnum, int fbdev = FB_DEV_0);

Type Name in/out Description Values
int camnum in Camera Number 3D50 : 1-2

3D70 : 1-3
3D2104: 1-4
3D101: 1-4

int fbdev in Frame buffer
device

See below

The "fbdev" value indicates whether the GRAPHICS are being sent to fb0 or fb1.

When GRAPHICS are being sent to fb0, then video will be sent to fb1 and only

foreground mode is allowed. This is the default assumed if "fbdev" is missing.

If GRAPHICS are being sent to fb1, then video will be sent to fb0 and both

foreground and background modes are supported. In order to send GRAPHICS

to fb1, add this parameter to the command line that launches Qt: -display

LinuxFb:/dev/fb1

Grayhill 91

Camera::setdisplayparams

Sets the following display window parameters

• origin

• window size

• rotation

• foreground or background with color key (When using background mode
the camera video only shows through where the graphics data is set to the
color that matches the specified color key. Graphics of any other color will
appear on top of the camera video image.)

Syntax

int Camera::setdisplayparams(PDISPLAYPARAMS p);

Type Name in/out Description Values
PDISPLAYPARAMS p in refer to DISPLAYPARAMS structure

int Return value 0 – success
-1 - failure

Camera::setcolorparams

Sets the following camera color parameters

• Brightness

• Saturation

• Contrast

• Hue

Syntax

int Camera::setcolorparams(PCOLORPARAMS p);

Type Name in/out Description Values
PCOLORPARAMS p in refer to COLORPARAMS structure

int Return value 0 – success
-1 - failure

92 Grayhill

Camera::setsensorparams

Sets the camera sensor parameters

Syntax

int Camera::setsensorparams(PSENSORPARAMS psensor);

Type Name in/out Description Values
PSENSORPARAMS psensor in refer to SENSORPARAMS structure

int Return value 0

Camera::show

Enables or disables the camera

Syntax

int Camera::show(int enable);

Type Name in/out Description Values
int enable in Turn on/off camera 0 – disable

 1 - enable

int Return value 0 – success
-1 - failure

Grayhill 93

Sample Code
#include “camera.h”

COLORPARAMS color;

DISPLAYPARAMS disp;

int cameranum = 1; // camera input 1

Camera cam(cameranum);

disp.top = 0;

disp.left = 80;

disp.height = 480;

disp.width = 640;

disp.rotate = 4; // rotate 90 degree right

disp.fg = FOREGROUND;

// configure display parameters

cam.setdisplayparams(&disp);

// start camera

cam.show(1);

// change color parameters

color.brightness = 50;

color.saturation = 128;

color.contrast = 128;

color.hue = 0;

// configure color parameters

cam.setcolorparams(&color);

....

// stop l+camera

cam.show(0);

94 Grayhill

Camera Driver Interface (Multi-camera)

The following describes the camera driver interface that is used with the 4.1.15

kernel. This interface allows multiple cameras to be displayed simultaneously.

• Up to 2 simultaneous cameras may be displayed for models 3D50 and 3D70.

Camera 1 and camera 3 cannot be displayed simultaneously.

• Up to 3 simultaneous cameras may be displayed for models 3D2104 and 3D101.

Camera 1 and camera 4 cannot be displayed simultaneously.

Data Types
#define FOREGROUND (1)

#define BACKGROUND (0)

//

// These are the only allowed values for VIDEO_COLOR_KEY_xxx

//

#define VIDEO_COLOR_KEY_BLACK (0x00000000)

#define VIDEO_COLOR_KEY_RED (0x00FF0000)

#define VIDEO_COLOR_KEY_GREEN (0x0000FF00)

#define VIDEO_COLOR_KEY_BLUE (0x000000FF)

#define VIDEO_COLOR_KEY_YELLOW (0x00FFFF00)

#define VIDEO_COLOR_KEY_CYAN (0x0000FFFF)

#define VIDEO_COLOR_KEY_MAGENTA (0x00FF00FF)

#define VIDEO_COLOR_KEY_WHITE (0x00FFFFFF)

The camera output always operates in native landscape mode. Use the following

rotation values to support other display and camera orientations:

Value Rotation

0 No rotation

1 Vertical flip

2 Horizontal flip

3 180

4 90 right

5 90 right with vertical flip

6 90 right with horizontal flip

7 90 left

typedef struct _DISPLAYPARAMS

{

 unsigned int top;

Grayhill 95

 unsigned int left;

 unsigned int height;

 unsigned int width;

 unsigned int rotate; // 0-7

 unsigned int fg; // FOREGROUND or BACKGROUND + VIDEO_COLOR_KEY_xxx

} DISPLAYPARAMS, *PDISPLAYPARAMS;

typedef struct _COLORPARAMS

{

 unsigned int brightness; // 0-255

 unsigned int saturation; // 0-255

 unsigned int hue; // 0x7F, 0 , 0x80

 unsigned int contrast; // 0-255

} COLORPARAMS, *PCOLORPARAMS;

typedef struct _SENSORPARAMS

{

 unsigned int top;

 unsigned int left;

 unsigned int height;

 unsigned int width;

} SENSORPARAMS, *PSENSORPARAMS;

enum camera_system_mode {

 MODE0_GR_FB0_CAM_FB0,

 MODE1_GR_FB1_CAM_FB0_LALPHA,

 MODE2_GR_FB1_CAM_FB0_COLORKEY,

 MODE3_GR_FB0_CAM_FB1_LALPHA,

 MODE4_GR_FB0_CAM_FB1_COLORKEY

};

typedef struct _CAMERAMODE

{

 enum camera_system_mode mode;

 unsigned int alpha;

 unsigned int local_alpha;

 unsigned int color_key;

 unsigned int options;

} CAMERAMODE, *PCAMERAMODE;

API calls
int Camera_system_init(CAMERAMODE *, int verbose);

int Camera_system_uninit(void);

int Camera_show(int cam_num, PDISPLAYPARAMS pdisplay, PSENSORPARAMS

psensor);

int Camera_hide(int cam_num);

int Camera_freeze(int cam_num);

int Camera_setcolorparams(int cam_num, PCOLORPARAMS p);

96 Grayhill

int Camera_getcolorparams(int cam_num, PCOLORPARAMS p);

int Camera_save_image_to_buffer(int cam_num, void *buffer, unsigned

buf_size);

int Camera_get_image_storage_size(int cam_num);

Camera_system_init

This function configures the mode used by the camera system driver for displaying graphics

and camera video on the frame buffers.

Syntax

int Camera_system_init (CAMERAMODE *pmode, int verbose);

Parameters

Type Param Description Values
CAMERAMODE * pmode refer to CAMERAMODE structure

int verbose Print some info messages

The mode is set according to the following options:

mode setting (camera_system_mode) Frame
Buffer 0

(fb0)

Frame
Buffer 1

(fb1)

Mixing

MODE0_GR_FB0_CAM_FB0 Graphics,
Cameras

MODE1_GR_FB1_CAM_FB0_LALPHA Cameras Graphics Alpha
Blending

MODE2_GR_FB1_CAM_FB0_COLORKEY Cameras Graphics Color
Key

MODE3_GR_FB0_CAM_FB1_LALPHA Graphics Cameras Alpha
Blending

MODE4_GR_FB0_CAM_FB1_COLORKEY Graphics Cameras Color
Key

For modes 1 and 3, the 3Dxx display provides for alpha blending between the 2 frame

buffers (fb0, and fb1). Frame buffer fb1 is ‘on top of’ fb0. This allows, for example, text in

fb1 to overlay graphics in fb0.

The alpha setting is a value between 0x00 and 0xFF, and is interpreted as follows:

Alpha fb0 fb1

0x00 100% 0%

0x80 50% 50%

0xFF 0% 100%

By default, the alpha setting is 0x80, which is 50% blending between fb0 and fb1

Grayhill 97

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

Camera_system_uninit

This function unconfigures the camera system driver mode.

Syntax

int Camera_system_uninit (void);

Parameters
None

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

Camera_show

This function makes the display window visible for the specified camera.

Syntax

int Camera_show (int cam_num,

 PDISPLAYPARAMS pdisplay,

 PSENSORPARAMS psensor);

Parameters

Type Param Description Values
int cam_num Camera number 3D50 : 0-1

3D70 : 0-2
3D2104 : 0-3
3D101 : 0-3

PDISPLAYPARAMS pdisplay refer to DISPLAYPARAMS structure

PSENSORPARAMS psensor refer to SENSORPARAMS structure

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h

98 Grayhill

Link Library: libghdrv.so

Camera_hide

This function makes the display window invisible for the specified camera.

Syntax

int Camera_hide (int cam_num);

Parameters

Type Param Description Values
int cam_num Camera number 3D50 : 0-1

3D70 : 0-2
3D2104 : 0-3
3D101 : 0-3

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

Camera_freeze

This function freezes the video window for the specified camera.

Syntax

int Camera_freeze (int cam_num);

Parameters

Type Param Description Values
int cam_num Camera number 3D50 : 0-1

3D70 : 0-2
3D2104 : 0-3
3D101 : 0-3

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

Grayhill 99

Camera_setcolorparams

This function sets the following color parameters of the display window for the specified

camera:

• Brightness

• Saturation

• Contrast

• Hue

Syntax

int Camera_setcolorparams (int cam_num, PCOLORPARAMS pcolor);

Parameters

Type Param Description Values
int cam_num Camera number 3D50 : 0-1

3D70 : 0-2
3D2104 : 0-3
3D101 : 0-3

PCOLORPARAMS pcolor refer to COLORPARAMS structure

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

Camera_getcolorparams

This function gets the following color parameters of the display window for the specified

camera:

• Brightness

• Saturation

• Contrast

• Hue

•
Syntax

int Camera_getcolorparams (int cam_num, PCOLORPARAMS pcolor);

Parameters

Type Param Description Values
int cam_num Camera number 3D50 : 0-1

3D70 : 0-2
3D2104 : 0-3
3D101 : 0-3

PCOLORPARAMS pcolor refer to COLORPARAMS structure

100 Grayhill

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

Camera_save_image_to_buffer

This function saves a snapshot of the video display window for the specified camera.

Syntax

int Camera_save_image_to_buffer (int cam_num, void *buffer,

 unsigned buf_size);

Parameter

Type Param Description Values
int cam_num Camera number 3D50 : 0-1

3D70 : 0-2
3D2104 : 0-3
3D101 : 0-3

void * buffer Pointer to buffer to receive image
data

unsigned buf_size size of receive buffer

Return Value
int 0 = success, -1 = failure

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

Camera_get_image_storage_size

This function returns the size of the image data for the specified camera.

Syntax

int Camera_get_image_storage_size (int cam_num);

Parameters

Type Param Description Values
int cam_num Camera number 3D50 : 0-1

3D70 : 0-2
3D2104 : 0-3
3D101 : 0-3

Return Value

Grayhill 101

int size of image

Required Files
Header File: camera_eng.h
Link Library: libghdrv.so

102 Grayhill

Sample Code (1 camera displayed)
 #include <camera.h>

 #include “3Dxx-4115/camera_eng.h”

 // camera index

 #define CAM1 (0)

 DISPLAYPARAMS camDisplayParms;

 SENSORPARAMS camSensorParams;

 CAMERAMODE *cm = NULL;

 // configure camera initialization mode

 //

 cm = new CAMERAMODE;

 cm->mode = MODE1_GR_FB1_CAM_FB0_LALPHA;

 cm->options = 0;

 cm->local_alpha = 0x80; // 50% blending

 cm->alpha = 0xff;

 cm->color_key = 0;

 // initialize camera system

 //

 Camera_system_init (cm, false);

 // set camera display parameters

 //

 camDisplayParms.fg = FOREGROUND;

 camDisplayParms.rotate = 0; // No rotation

 camDisplayParms.top = 0;

 camDisplayParms.left = 0; // Must be divisible by 4

 camDisplayParms.height = 480;

 camDisplayParms.width = 640;

 // set camera sensor parameters for NTSC

 //

 camSensorParams.top = 4;

 camSensorParams.left = 0;

 camSensorParams.width = 640;

 camSensorParams.height = 480;

 // turn camera on

 //

 Camera_show (CAM1, &camDisplayParms, &camSensorParams);

 // turn camera off

 //

 Camera_hide (CAM1);

Grayhill 103

Sample Code (2 cameras displayed)
 #include <camera.h>

 #include “3Dxx-4115/camera_eng.h”

 #define MAX_CAMERAS (3)

 // camera indices

 #define CAM1 (0)

 #define CAM2 (1)

 #define CAM3 (2)

 DISPLAYPARAMS camDisplayParms[MAX_CAMERAS];

 SENSORPARAMS camSensorParams;

 CAMERAMODE *cm = NULL;

 // configure camera initialization mode

 //

 cm = new CAMERAMODE;

 cm->mode = MODE1_GR_FB1_CAM_FB0_LALPHA;

 cm->options = 0;

 cm->local_alpha = 0x80; // 50% blending

 cm->alpha = 0xff;

 cm->color_key = 0;

 // initialize camera system

 //

 Camera_system_init (cm, false);

 //

 // camera 1 on left half of screen

 //

 // set camera #1 display parameters

 //

 camDisplayParms[CAM1].fg = FOREGROUND;

 camDisplayParms[CAM1].rotate = 0; // No rotation

 camDisplayParms[CAM1].top = 0;

 camDisplayParms[CAM1].left = 0; // Must be divisible by 4

 camDisplayParms[CAM1].height = 480;

 camDisplayParms[CAM1].width = 320;

 // set camera sensor parameters for NTSC

 //

 camSensorParams.top = 4;

 camSensorParams.left = 0;

 camSensorParams.width = 640;

 camSensorParams.height = 480;

 //

 // camera 2 on right half of screen

 //

 // set camera #2 display parameters

 //

 camDisplayParms[CAM2].fg = FOREGROUND;

 camDisplayParms[CAM2].rotate = 0; // No rotation

104 Grayhill

 camDisplayParms[CAM2].top = 0;

 camDisplayParms[CAM2].left = 320; // Must be divisible by 4

 camDisplayParms[CAM2].height = 480;

 camDisplayParms[CAM2].width = 320;

 //

 // same sensor parameters as camera 1

 //

 // turn camera 1 on

 //

 Camera_show (CAM1, &camDisplayParms[CAM1], &camSensorParams);

 // turn camera 2 on

 //

 Camera_show (CAM2, &camDisplayParms[CAM2], &camSensorParams);

 // turn cameras off

 //

 Camera_hide (CAM1); // cam 1

 Camera_hide (CAM2); // cam 2

Grayhill 105

CAN Driver Interface

The 3D50 and 3D70 displays includes two CAN controller modules. Available

CAN ports are CAN1 and CAN2. The 3D2104 and 3D101 displays include three

CAN controller modules. Available CAN ports are CAN1, CAN2, and CAN3. The

CAN controller supports both standard and extended frames.

The following Grayhill files are required:

• libghdrv.so (linker)

Data Types
/*

 * special flag bits for the CAN_ID

 */

#define CAN_EFF_FLAG 0x80000000U /* EFF flag (add to ID to

 activate 29-bit ID) */

#define CAN_RTR_FLAG 0x40000000U /* remote transmission request */

#define CAN_ERR_FLAG 0x20000000U /* error frame */

struct _CANMSG

{

unsigned int ID;

unsigned int Length; // Data Length Code of the Msg (0..8)

unsigned char Data[8];

};

typedef struct _CANMSG CANMSG, *PCANMSG;

Interface

The Qt application interfaces with the CAN bus driver using the CAN class.

CAN::CAN

CAN class constructor

Syntax

CAN::CAN(int num);

Type Name in/out Description Values
int num in CAN port number 3D50 : 1-2

3D70 : 1-2
3D2104: 1-4
3D101 : 1-4

106 Grayhill

CAN::OpenPort

Opens the CAN socket

Syntax

int CAN::OpenPort(void);

Type Name in/out Description Values
int Return value 0 – success

-1 - failure

CAN::WritePort

Writes a single CAN frame to the CAN port.

Syntax

int CAN::WritePort(PCANMSG TxMsg);

Type Name in/out Description Values
PCANMSG TxMsg in CAN frame to be

written

int Return value 0 – success
-1 - failure

CAN::ReadPort

Attempts to read a single CAN frame from the CAN port. Note that the CAN

socket is configured to be non-blocking, so calls to ReadPort will return even if

there is no data.

Syntax

int CAN::ReadPort(PCANMSG RxMsg);

Type Name in/out Description Values
PCANMSG RxMsg in CAN frame

received

int Return value Bytes read or (-1) for failure

Grayhill 107

CAN::ClosePort

Closes the CAN socket

Syntax

void CAN::ClosePort(void);

Sample Code
#include “can.h”

CANMSG TxMsg;

CANMSG RxMsg;

int bytesread = 0;

int cannum = 1; // CAN1

/* Init TX and RX message */

TxMsg.ID = 0x23;

TxMsg.Length = 8;

for (int i=0; i<8; i++)

 TxMsg.Data[i] = (0x11 * (i+1)); // fill random data

memset((void *)&RxMsg, 0, sizeof(CANMSG));

// CAN1

CAN can(cannum);

can.OpenPort();

can.WritePort(&TxMsg);

do

{

 bytesread = can.ReadPort(&RxMsg);

 // add delay

} while (bytesread != sizeof(CANMSG));

can.ClosePort();

108 Grayhill

Digital I/O Driver Interface

The Model 3D50 Display, Model 3D70 Display, Model 3D2104 Display, and

Model 3D101 Display each have four digital inputs and four digital outputs, but

they are configured differently and these differences will be explained. Each

device uses the same library calls to read the digital inputs and set the digital

outputs.

On the 3D50 Five Inch Display Pin 4 on its connector is a dedicated input only

pin. Pin 5 is a dedicated output only pin. Pins 6, 7, and 8 are shared I/O pins that

can be used to output a signal or input a signal.

On the Model 3D70 Seven Inch Display each of the four inputs are dedicated and

so operate independently of any output pins.

On the Model 3D2104 10.4 Inch Display all digital output pins are shared I/O pins

that can be used to output a signal or input a signal.

On the Model 3D101 10.1 Inch Display all digital output pins are shared I/O pins

that can be used to output a signal or input a signal.

 For a shared I/O pin to function as an input, the corresponding output must be

set low.

The following table summarizes all of the digital I/O pins for each model:

Model 3D50 Pins Model 3D70 Pins Model 3D2104 and 3D101 Pins

Input 1 (Pin 4) Input 1 (Pin 4 Connector A) Input 1 or Output 1 (Pin 10)

Input 2 or Output 2 (Pin 6) Input 2 (Pin 8 Connector B) Input 2 or Output 2 (Pin 21)

Input 3 or Output 3 (Pin 7) Input 3 (Pin 9 Connector B) Input 3 or Output 3 (Pin 32)

Input 4 or Output 4 (Pin 8) Input 4 (Pin 10 Connector B) Input 4 or Output 4 (Pin 9)

Output 1 (Pin 5) Output 1 (Pin11 Connector B)

 Output 2 (Pin12 Connector B)

 Output 3 (Pin13 Connector B)

 Output 4 (Pin14 Connector B)

The following Grayhill files are required:

• ghiolib.h (header)

• libghio.so (linker)

Grayhill 109

Interface

A Qt application may set or get the digital I/O pin states by calling the appropriate

C library function as described below.

#define GHIOLIB_CH1 (0x01)

#define GHIOLIB_CH2 (0x02)

#define GHIOLIB_CH3 (0x03)

#define GHIOLIB_CH4 (0x04)

#define GHIOLIB_MAX_DIGITAL_IO (4)

#define GHIOLIB_DIG_IN_FLOAT (0)

#define GHIOLIB_DIG_IN_PULL_DN (1)

#define GHIOLIB_DIG_IN_PULL_UP (2)

#define GHIOLIB_RET_OK 0

#define GHIOLIB_RET_ERROR 1

#define GHIOLIB_RET_NOTSUPPORTED 2

ghiolib_setDigIncfg (Model 3D70 only)

Sets input pin pull-up/pull-down configuration.

Syntax

int ghiolib_setDigIncfg(int ch, uint8_t config);

Type Name in/out Description Values
int ch in Input pin to configure GHIOLIB_CH1

GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t config in pin configuration GHIOLIB_DIG_IN_FLOAT
GHIOLIB_DIG_IN_PULL_DN
GHIOLIB_DIG_IN_PULL_UP

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

110 Grayhill

ghiolib_getDigIn

This function reads the state of an input pin.

Syntax

int ghiolib_getDigIn(int ch, uint8_t *value);

Type Name in/out Description Values
int ch in Input pin to read GHIOLIB_CH1

GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t value out pin status 0 – input low
1 – input not low

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

ghiolib_getDigOut

Reads the current state of an output pin.

Syntax

int ghiolib_getDigOut(int ch, uint8_t *value);

Type Name in/out Description Values
int ch in Output pin to read GHIOLIB_CH1

GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t value out pin status 0 – output low
1 – output not low

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

Grayhill 111

ghiolib_setDigOut

This function sets the current state of an output pin.

Syntax

int ghiolib_setDigOut(int ch, uint8_t value);

Type Name in/out Description Values
int ch in Output pin to set GHIOLIB_CH1

GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t value in pin status 0 – set pin output low
!0 – set pin output high

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

Sample Qt Code
#include <QDebug>

// For access to ghiolib

typedef u_int16_t uint16_t;

typedef u_int8_t uint8_t;

#ifdef __cplusplus

extern "C" {

#endif

#include "ghiolib.h"

#ifdef __cplusplus

}

#endif

int channel;

uint8_t digValue;

int gpioOutput;

int gpioInput;

int gpioStatus;

// Set inputs to pull down mode and read current inputs and outputs

// for each channel

gpioOutput = 0;

gpioInput = 0;

for (channel = 0; channel < GHIOLIB_MAX_DIGITAL_IO; channel++)

{

 // Set input to pull down mode

 gpioStatus = ghiolib_setDigIncfg(channel + 1,

GHIOLIB_DIG_IN_PULL_DN);

 if ((GHIOLIB_RET_OK != gpioStatus) && (GHIOLIB_RET_NOTSUPPORTED !=

gpioStatus))

 {

 qDebug("ERROR (%d) doing ghiolib_setDigIncfg on channel: %d\n",

112 Grayhill

 gpioStatus, channel + 1);

 }

 // Read current output setting

 digValue = 0;

 gpioStatus = ghiolib_getDigOut(channel + 1, &digValue);

 if (GHIOLIB_RET_OK != gpioStatus)

 {

 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel: %d\n",

 gpioStatus, channel + 1);

 }

 else

 {

 if (1 == digValue)

 {

 gpioOutput |= (1 << channel);

 }

 }

 // Read current input

 digValue = 0;

 gpioStatus = ghiolib_getDigIn(channel + 1, &digValue);

 if (GHIOLIB_RET_OK != gpioStatus)

 {

 qDebug("ERROR (%d) doing ghiolib_getDigIn on channel: %d\n",

 gpioStatus, channel + 1);

 }

 else

 {

 if (1 == digValue)

 {

 gpioInput |= (1 << channel);

 }

 }

}

qDebug("GPIO initial output: 0x%x input: 0x%x\n", gpioOutput,

gpioInput);

Grayhill 113

LCD

The Grayhill 3Dxx Series Display uses a 16 bit per pixel LCD screen. The pixel

dimensions of various 3Dxx Display products are shown in the section Error! R

eference source not found.. The default orientation of the frame buffer is

landscape mode (wider pixel dimension is in horizontal direction).

LCD Backlight

The LCD Backlight setting is a value between 0 (minimum) and 100 (maximum)

inclusive. The brightness value can be set in the file /sys/class/backlight/pwm-

backlight.0/brightness

Sample Code
int value = 80;

QFile file("/sys/class/backlight/pwm-backlight.0/brightness");

if (file.open(QIODevice::WriteOnly | QIODevice::Text))

{

 QTextStream out(&file);

 out << value;

 file.close();

}

114 Grayhill

Appendix F: Setting 3Dxx Flash File System R/W Mode

To immediately configure the 3Dxx Display file system for read-write mode enter

the following command in a terminal window on the display:

• mount –o remount,rw /

The above command only remains in effect until the next reboot.

The 3Dxx installation script utilizes the following technique to configure the 3Dxx

Display file system to be in read-write mode to make Qt development more

convenient.

The above command is placed in a script file which is invoked during display

initialization. This file /home/writeablefs is called via the following link:

• ln –s /home/writeablefs /etc/rc.d/S03writeablefs

To leave the display in read-only mode:

• mv /home/writeablefs /home/writeablefs.bak

Alternatively, to set the 3Dxx display file system to read-write mode on boot-up,

edit the file /etc/init.d/rc-once and add the above command to the end of this file

just before the final “exit” command like this:

…

case "$1" in

 start)

 do_start >&2

 ;;

 *)

 echo "Usage: $0 {start}" >&2

 exit 1

 ;;

esac

mount -o remount,rw /

exit 0

To leave the 3Dxx Display file system set to read-only mode on boot-up, edit the

file /etc/init.d/rc-once and remove the “mount –o remout,rw /” line near the end of

the file (or comment it out by putting a “#” in column one of that line).

Grayhill 115

Appendix G: Building Qt Library Source (optional)

N.B. This appendix is included for reference and is not a required step.

N.B. Library building is supported only under Linux.

This section describes the procedure to download and build the Qt library source

code.

Please reference https://doc.qt.io/qt-5/windows-requirements.html for additional

information.

This procedure relies on Qt Creator and the Grayhill support files being installed.

Grayhill provides an archive script with the following files:

o mkLibs script used to build the libraries

o qmake.conf Grayhill modified configuration file

o qt_configure.prf Grayhill modified rule file

o qtLibSrcInstall Qt library installation script

o updInc fix incorrectly generated makefile

• Download the Qt library installation archive from Grayhill
o qtLibSrc5122.tgz

• Copy/move the downloaded file to /home/ghguest

• Un archive
o tar xf qtLibSrc5122.tgz

• Run installer (this fetches the library source from Qt)
o ./qtLibSrcInstall

• Build Libs
o Follow instructions provided by installation script; mkLibs provides the

root password as needed

N.B. To reduce build time, increase the VM’s processor count. This needs to be

done in a VM powered off state.

https://doc.qt.io/qt-5/windows-requirements.html

116 Grayhill

Appendix H: Dynamic IP Address

To find the 3Dxx display’s Ethernet IP address, issue the following command in a

terminal window on the display

• ifconfig eth0

The IP address of the 3Dxx Display is displayed after the tag “inet addr:” and

is circled in red in the example output shown below.

If the tag “inet addr:” is not present, enter these commands and try the

“ifconfig eth0” command again

• ifdown eth0

• ifup eth0

Please make a note of the IP address, in this example the IP address is

192.168.40.118

Grayhill 117

Appendix I: Static IP Address

If using a static IP address for the display, once the address is determined:

• cp /etc/network/interfaces /etc/network/interfaces.bak

• vi /etc/network/interfaces

• replace lines

iface eth0 inet dhcp

 udhcpc_opts -t 5 -T 3 -A 20 -S &

• with

iface eth0 inet static

 address 192.168.40.118

 netmask 255.255.255.0

 Google “linux interface file” for additional information.

