

Vehicle Solutions Group

Qt 5.12.2 User’s Guide

Linux and Windows

VSUD2019-03

Revision A

2 Grayhill

Table of Contents

1. Introduction ... 4

1.1 Purpose .. 4

1.2 Acronyms and Definitions .. 5

1.3 References ... 5

1.4 Revision History ... 5

2. Requirements .. 6

2.1 Hardware ... 6

2.1.1 Supported Grayhill Display Hardware.. 6
2.1.2 Recommended Equipment .. 7

2.2 Software ... 7

2.2.1 Qt Installer (https://www.qt.io/download) .. 7
2.2.2 Grayhill Qt Support Files (http://www.grayhill.com/qt43d) 7
2.2.3 Windows Utilities ... 7

3. Installation... 8

3.1 Install the Development Kit... 8

3.2 Download and Install Qt Creator .. 9

3.3 Windows Utilities .. 22

3.3.1 Download and Install PuTTY ... 22

3.4 Configuring 3Dxx Display’s IP Address .. 23

3.4.1 Linux ... 23
3.4.2 Windows ... 25
3.4.3 Verification of Established Session .. 27
3.4.4 Configure IP address ... 28

3.4.4.1 Linux ... 28

3.4.4.2 Windows ... 29

3.5 Download and Install Support Files .. 32

3.5.1 Linux ... 32
3.5.2 Windows ... 33

3.6 Build and Run 3Dxx Embedded Application ... 37

3.6.1 Launch Qt Creator... 37

3.6.1.1 Linux ... 37

3.6.1.2 Windows ... 38

3.6.2 Open project .. 39

3.6.2.1 Linux ... 39

Grayhill 3

3.6.2.2 Windows ... 39

3.6.3 Build Project ... 41

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays 43

Appendix B: Configuring a 3Dxx Project .. 60

Appendix C: Debugging ... 72

Appendix D: Setting up a 3Dxx Qt Program to Run at Boot Up 76

Appendix E: Interfacing 3Dxx Hardware from QT Software 78

Appendix F: Setting 3Dxx Flash File System R/W Mode 100

Appendix G: Building Qt Library Source (optional) ... 101

Appendix H: Dynamic IP Address.. 102

Appendix I: Static IP Address .. 103

4 Grayhill

1. Introduction

1.1 Purpose

This document describes:

 Setup and usage of the Qt-based development environment for

Grayhill 3Dxx display products

 Code development for a 3Dxx Display product in the Qt IDE

 Accessing various 3Dxx hardware features via this code

 Loading developed application code onto a 3Dxx Display product

The Qt cross-platform development environment runs under both Linux and

Windows 10. The Linux platform is supported by a virtual machine using

Oracle’s VirtualBox (https://www.virtualbox.org/wiki/VirtualBox) software.

The virtual machine is Ubuntu 16.04 using gnome flashback for the desktop;

additionally PuTTY (telnet client software - http://www.putty.org) is installed.

16.04 is a Long Term Support release, currently scheduled for end of life in

April 2021. The VM also comes with Qt Creator and libraries installed.

For Virtual Machine installation, please reference “Virtual Machine

Installation Using VirtualBox”, which is available on the Grayhill web site

(www.grayhill.com/qt43d)

This document is intended for use by software developers familiar

programming in C/C++ using the Qt framework. Experience developing

applications for Linux platforms is a definite plus.

Screen shots try to be as accurate as possible and are provided as

reference.

N.B. Screen images are mixed between the Windows version of Qt Creator

and Linux, but the steps are the same.

Note: Qt is licensed under the terms of LGPL and GPL. These are open-

source licensing agreements. Please reference https://www1.qt.io/qt-

licensing-terms/ for a detailed explanation. Additional information is also

located at https://www.gnu.org/licenses/licenses.html.

Grayhill 5

1.2 Acronyms and Definitions

3Dxx Reference to any of the Grayhill 3D series

displays (3D50, 3D70, 3D2104)

CAN Controller Area Network

GB Giga Byte

RAM Random Access Memory

USB Universal Serial Bus

VM Virtual Machine

1.3 References

[1] VSTN2019-01 Linux - Upgrade existing Qt 5.9.3 Libraries to Qt

5.12.2

[2] VSTN2019-02 Windows 10 - Upgrade existing Qt 5.9.3 Libraries

to Qt 5.12.2

[3] VSUD2019-06 Virtual Machine Installation Using VirtualBox

1.4 Revision History

Revision Author Date Description

A K. Struss 9/6/2019 Initial Release combining the
previous independent Linux and
Windows manuals

6 Grayhill

2. Requirements

2.1 Hardware

2.1.1 Supported Grayhill Display Hardware

The Qt-based development environment supports the following Grayhill

3Dxx Color Display Models:

 3D50

 3D70

 3D2104

The table below summarizes the key features of each of these models. Note

that the features of a specific product may vary depending on the purchased

hardware configuration.

Model Number 3D50-x00 3D70-x00 3D2104-x00

Display Size (inches) 5 7 10.4

Pixel Count (w x h) 800 x 480 800 x 480 1024 x 768

Touch Screen Input Yes Yes Yes

Real Time Clock Yes Yes Yes

CAN Ports 2 2 3

Camera Inputs 2 3 4

USB ports
1 (maintenance
only)

1 (maintenance
only)

1 (maintenance
only)

RS232
1 (maintenance
only)

1 (maintenance
only)

1 (maintenance
only)

Built-in Ethernet 0 1 1

Digital Input
(dedicated)

1 4
0

Digital Output
(dedicated)

1 4
0

Digital Input / Output 3 0 4

Analog Input 0 2 0

Audio Output No 1 channel No

Buzzer No Yes Yes

Grayhill 7

2.1.2 Recommended Equipment

It is strongly recommended the associated development kit be used for

development.

 3D50DEV-100 3D50 Development Kit

 3D70DEV-100 3D70 Development Kit

 3D2104DEV-100 3D2104 Development Kit

PC Running Windows 10 with the following minimum configuration:

 4 GB RAM (minimum)

 10/40 (VM) GB available hard drive space (minimum)

 Ethernet (RJ45) port (or USB adapter)1

 RS232 Port (or USB to serial adapter)

 Internet Access

2.2 Software

The following software packages are available on-line

2.2.1 Qt Installer (https://www.qt.io/download)

2.2.2 Grayhill Qt Support Files (http://www.grayhill.com/qt43d)

 QtGhInstall5122Linux

 QtGhInstall5122Win10.exe

 Virtual Machine Appliance (optional)

2.2.3 Windows Utilities

 Notepad++ (https://notepad-plus-plus.org/)

 PuTTY (https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)

1
 An Ethernet port connected to a DHCP server connected to the 3Dxx display. This port

should be on the same network as the development PC.

8 Grayhill

3. Installation

This is a brief overview of the installation steps for the Qt-based

development environment for Grayhill 3Dxx displays.

 Connect the 3Dxx Development Kit hardware to the PC

 Qt Creator for Windows is downloaded and installed on the

development PC

 Optional third party utilities are downloaded, installed, and configured

(Windows)

 The serial and Ethernet links to the target 3Dxx display hardware are

established.

 Grayhill support files are downloaded and installed

 A script is run to configure the target 3Dxx display board

 Instructions on how to open and run a Qt demonstration project on

the 3Dxx display target hardware or desktop environment. This

demonstration project illustrates:

o using touch screen “buttons”

o using touch screen swipes

o setting the 3Dxx backlight

o operating the 3Dxx camera input

o accessing and setting the real time clock

Instructions for using the desktop simulator are in Error! Reference source

not found.

If a VM is going to be the development environment, it must be

installed now. See [3] for complete instructions and configuration.

For VM installation, the procedure continues at 3.4 Configuring 3Dxx

Display’s IP Address.

3.1 Install the Development Kit

Connect the serial port and Ethernet port interfaces. The 3D50 display

procedure is described in the document “3D50DEV Quick Start Guide.pdf”

and the 3D70 in “3D70DEV Quick Start Guide.pdf”

Grayhill 9

3.2 Download and Install Qt Creator

N.B. This section is mandatory for Windows users. The Linux VM comes

with Qt Creator pre-installed.

In this section, the Qt on-line installer will be downloaded and executed to

download and install files from Qt. Once all the files are downloaded; Qt will

be installed.

 Using your favorite web browser:

o https://www.qt.io/download

o scroll down and click “Go open Source”

o scroll down and click “Download”

 After the file downloads, open the downloads folder and double click

on the file to execute the installer. If a “Security Warning” similar to

below appears; click “Run”

10 Grayhill

 Click Next

Grayhill 11

 Create an account, if desired – otherwise click “Skip”

12 Grayhill

 If an account was created click “Next” – otherwise this screen will not

appear

Grayhill 13

 Whether “Skip” or an account was created; installation continues

here

 Click “Next”

14 Grayhill

Grayhill 15

 Click “Next”

N.B. Due to the nature of Qt and the way it stores configuration information;

Qt must be installed in C:\Qt.

16 Grayhill

 Expand Qt  Qt 5.12.2

 Select “MinGW 7.3.0 32bit”

 Click “Next”

Grayhill 17

 If accepting of the license agreement select “I have read…”

 Click “Next”

Note: Qt is licensed under the terms of LGPL and GPL; these are open-

source licensing agreements. Please reference https://www1.qt.io/qt-

licensing-terms/ for a detailed explanation. Additional information is also

located at https://www.gnu.org/licenses/licenses.html.

18 Grayhill

 Click “Next”

Grayhill 19

 Click “Install”

20 Grayhill

Grayhill 21

 Unselect “Launch Qt Creator”

 N.B. Qt Creator does not know the IP address of the target board at

this time; the target board’s IP address will be discovered and

configured later. Any time the IP address of the display changes, Qt

Creator must be re-launched if using the /etc/hosts file for IP address

resolution.

 Click “Finish”

22 Grayhill

3.3 Windows Utilities

3.3.1 Download and Install PuTTY

The examples shown in this document reflect the use of PuTTY. Feel free

to substitute a different client.

 Download Putty

 Open the downloads folder and double click to execute the PuTTY

installer

 Follow the installation instructions – connection configuration is

described later on in the document

Grayhill 23

3.4 Configuring 3Dxx Display’s IP Address

In order to complete the setup of the Qt development environment for the

3Dxx Display hardware; the IP address assigned to the 3Dxx Display must

be determined.

In order to perform these tasks, it is necessary to connect the 3Dxx Display

to the same network as the development PC.

 Connect the 3Dxx display serial port to a serial port on the

development PC

 Determine the serial port device name to use for PuTTY (serial

communication between the physical PC and the target)

3.4.1 Linux

This depends on how the 3Dxx Display serial port is physically connected to

the development PC. If using a built-in serial port on the development PC,

the serial port device name is “/dev/ttyS0”. If using a USB to serial port

adapter, the serial port device name is “/dev/ttyUSB0”.

Only if using the USB to serial port adapter: it must be activated at this time

by clicking on the “Devices” menu option at the top of the VirtualBox screen.

Select “USB” and click on the USB to serial port adapter device name in

order to select it. A sample is shown here (the USB device name may be

different than shown):

The Linux VM comes with PuTTY pre-installed, so minimal configuration is

required. The “Serial line” value may need to be updated based on the

above connecter.

 Launch PuTTY, the “PuTTY Configuration” screen appears

24 Grayhill

o Select COM1

o Click “Load”

o Click “Open”

Grayhill 25

3.4.2 Windows

 Launch PuTTY, the “PuTTY Configuration” screen appears configure

as follows:

o Select the “Serial” button

o Set “Serial line” to appropriate COM Port

o Change the “Speed” to 115000

o Enter a name in “Saved Sessions” (e.g. comPort1)

o Click “Save”

N.B. If “Open” is clicked any unsaved configuration modifications are lost!

26 Grayhill

o Click on “Data”

o Set “Auto-login username” to “root”

Grayhill 27

o Click back on “Session”, then click “Save” again

o Lastly, click “Open” to establish a connection

3.4.3 Verification of Established Session

Make sure that the 3Dxx display is powered up and press the “Enter” key

(Linux on left, Windows on right)

28 Grayhill

 A “ghiimx6 login:” prompt should appear. If the 3Dxx display

was just powered up; startup messages may appear as well, but

when they are done, pressing the “Enter” key should produce a

“ghiimx6 login:” prompt as shown.

 At the “ghiimx6 login:” prompt enter “root” (no password is

required)

 Depending on the IP address type, refer to the appropriate

appendix:

o Dynamic Appendix H: Dynamic IP Address

o Static Appendix I: Static IP Address

3.4.4 Configure IP address

Create an alias for the display’s IP address to be referenced by the host

computer.

N.B. If the IP address of the display changes; hosts must be updated and

Qt Creator re-launched.

 Linux

 Launch a Terminal Command Window

 In the terminal window type the following command:

o gedit2 /etc/hosts

 Update the IP address associated with “gmd”

 Click “Save”; then close the editing session

2
 vi is also available as a text editor if preferred

Grayhill 29

 Windows

 Open Windows Explorer window (<Window>-e)

 Navigate to C:  Windows  System32  drivers  etc and select

“hosts”

30 Grayhill

Grayhill 31

 Right click to edit the file using your favorite flavor of editor

(Screenshot illustrates Notepad++)

 After the editor is launched, Windows Explorer can be closed

 Add the IP address and “gmd” as illustrated below:

 Save the file

N.B. The editor may ask to restart in admin mode; allow it to continue as

hosts is a system file

32 Grayhill

3.5 Download and Install Support Files

This section details downloading and installation of the necessary Qt

support files. It also describes configuration of the host machine and 3Dxx

display for operation with the Qt development environment. The scripts work

for all display models 3D50, 3D70, and 3D2104.

 Launch an internet browser

 Navigate to www.grayhill.com/qt43d

3.5.1 Linux

N.B. Firefox can be launched from Applications  Internet

 Download QtGhInstall5122Linux

 Copy/move the downloaded file to /home/ghguest

 Open a terminal window and cd to home (cd)

 Make QtGhInstall5122Linux executable (it should already be

executable)

o chmod 755 QtGhInstall5122Linux

 Unarchive the files (self-extracting archive)

o ./QtGhInstall5122Linux

 Make installation script executable

o chmod 755 QtGhInstallLinuxInstall

 Install Qt support files on display

o ./QtGhInstallLinuxInstall

The above script without any arguments defaults to updating both the VM

and the display. To update additional displays, connect the 3Dxx and

update gmd (see previous section) with the IP address then re-run the

installation script to configure the display.

 ./QtGhInstallLinuxInstall 3dxx

The script reboots the display and requires a few minutes to complete

execution. If everything works correctly these are the last few lines:

setup3Dxx completed successfully... rebooting

Grayhill 33

Wed Apr 4 13:34:24 CDT 2018

If a message similar to this does not appear, the problem(s) must be

corrected before continuing.

The following files/directories are created on the VM:

 GrayhillDisplayPlatform <dir> sysroot for cross-compiling

 GrayhillExamples <dir> sample projects

 QtGhInstallLinuxInstall <file> installation script (re-run for

additional displays)

 targetFiles <dir> files copied/installed to the 3Dxx

3.5.2 Windows

 Download “Qt Creator Windows Support Files” from the Grayhill

website

 Open the download folder and double click on

“QtGhInstall5122Win10.exe”

 A User Account Control window may pop-up

o Click “Yes” to allow the self-extracting zip file to proceed

 The following window appears

o Click “Yes”

34 Grayhill

 Using Windows Explorer; navigate to “C: QtGhSupport” and verify

the folder was installed

Grayhill 35

 Double click on “QtGhInstallWinInstall.bat” to configure the display

36 Grayhill

 Restore any custom modifications. The setup script preserves files

by appending a timestamp

Grayhill 37

3.6 Build and Run 3Dxx Embedded Application

This section details how to build and run a demo application.

A Qt QML demonstration project is provided which runs (configured as

necessary) on each of the 3Dxx displays as well as the host machine.

Complete configuration instructions are in the appendices.

3.6.1 Launch Qt Creator

 Linux

Launch Qt Creator using one of the following methods:

 Select “Applications” (upper left-hand corner of the Linux window),

then navigate through “Programming” and click on “Qt Creator …”

38 Grayhill

 Click on the Qt icon in the panel

 Double click on the Qt icon on the desktop

 Windows

 Launch Windows Explorer (<Windows>-e)

 Navigate to C:  Qt  Tools  QtCreator  bin  qtcreator.exe

 Right click to select options like

o “Pin to Taskbar”

Grayhill 39

o “Send to”  Desktop (create shortcut)

 Double click to launch Qt Creator

3.6.2 Open project

 Select “Projects”

 Click on “Open Project” (“Welcome” should be automatically selected

on launch)

 Navigate to the desired project

 Linux

/home  GrayhillExamples  ghQmlDemo

 Windows

C:  QtGhSupport  GrayhillExamples  ghQmlDemo

40 Grayhill

 Select ghQmlDemo.pro

 Click “Open”

 If a similar box appears, click “Yes”

 If a similar box appears, click “OK”. Refer to Appendix B:

Configuring a 3Dxx Project before continuing. The current

project configuration file is not compatible with the current version of

Qt Creator and the project’s settings need to be re-configured.

Grayhill 41

3.6.3 Build Project

 Select “Projects” view

 Select “Build” under “Qt-5.12.2-3Dxx”3

 Expand qmake

 Verify qmake “Additional arguments:” is set to “hw_present=yes4

target=3D70”. N.B. use 3D50 or 3D2104 based on actual display.

3
 To build for the desktop select “Build” under “Desktop” …. Certain features are not

supported (e.g. Camera)
4
 hw_present must not be present for desktop builds and windowsOnly=true needs to be

set for Window builds of the demo

42 Grayhill

 Click on the green arrow to run (a check to see if the executable is up

to date is performed; if compilation is necessary the output can be

viewed by clicking on the “Compile Output” tab)

 Select the “Application Output” tab

 Click the red (when application is running on target) square to

terminate the target session

Grayhill 43

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays

N.B. This appendix is included for reference and is not a required

installation step. Grayhill automatically installs the kit configuration as part of

the support file installation. A kit is a collection of utilities (qmake,

compilers, debugger, etc…) used to build a project.

 Launch Qt Creator

 Select Tools  Options

Alternatively, “Manage Kits” can be selected from the “Projects” view.

44 Grayhill

General

The “General” tab is where project wide customization is done. Review and

select the desired configuration.

 Select “Build & Run”

 Select “General” tab

 Click “Apply” to continue and select other tabs, “OK” if finished

Grayhill 45

Device

The section describes how to establish an Ethernet based connection to the

display.

 Select “Devices”

 Click “Add…”

.

46 Grayhill

 Select “Generic Linux Device”

 Click “Start Wizard”

Grayhill 47

 Populate the fields as illustrated above

 N.B. The IP address associated with gmd is located in /etc/hosts

(Linux) and C:\Windows\System32\drivers\etc (Windows)

 Click “Next”

48 Grayhill

 Verify the 3Dxx Display is still powered up

 Click “Finish” – The Ethernet link to the 3Dxx Display will be tested

and if successful the following result screen appears

 Click “Close”

Grayhill 49

 Click the upper arrow on the right side of the “Timeout:” box to

increase timeout value to “20s”

50 Grayhill

Devices Summary

 Name name of the device

 Host name gmd alias -- specified in hosts

 Timeout 20s

 Username root

N.B. Remember verify connectivity using “Test”

Grayhill 51

Compiler

Select “Build & Run”

Select “Compilers” tab

Click “Add”; then select GCC  C

Populate the fields as illustrated

 “Name:” ARM-GCC

 “Compiler path:” Click “Browse…” and navigate to the

desired file

o /opt/OSELAS.Toolchain-2013.12.3/arm-cortexa9-linux-
gnueabi/gcc-4.8.3-glibc-2.18-binutils-2.24-kernel-3.12-
sanitized/bin/arm-cortexa9-linux-gnueabi-gcc

52 Grayhill

o C:\QtGhSupport\gcc-linaro-2013\bin\ arm-linux-gnueabi-
gcc.exe

Click “Open”

“ABI:” Select “arm-linux-generic-elf-32bit”

 The configuration portion of the screen should look similar to:

Grayhill 53

Repeat the above steps for GCCC++

 Click “Apply”

54 Grayhill

Debugger

Select the “Debuggers” tab

Click “Add”

Populate the fields as illustrated

 “Name:” 3Dxx Target Debugger

 “Path:” Click “Browse…” and navigate to the desired file (should be

previous directory)

o /opt/OSELAS.Toolchain-2013.12.3/arm-cortexa9-linux-
gnueabi/gcc-4.8.3-glibc-2.18-binutils-2.24-kernel-3.12-
sanitized/bin/arm-cortexa9-linux-gnueabi-gcc

o C:\QtGhSupport\debugger\arm-linux-gnueabi-gcc.exe

 Click “Open”; the configuration portion of the screen should look

similar to

Grayhill 55

 Click “Apply”

56 Grayhill

qmake

Select the “Qt Versions” tab

Click “Add” (Select a qmake Executable dialog box appears, still

referencing the last path)

Navigate to the qmake version associated with the library

o /usr/local/Qt-5.12.2-3Dxx/bin/qmake

o C:\QtGhSupport\qmakeInsatll\bin\qmake.exe

 Click “Open”

 Update “Version name:” to “Qt-5.12.2-3Dxx”

Grayhill 57

Kit

Select the “Kits” tab

Click “Add”

Populate the fields as illustrated

 “Name:” Qt-5.12.2-3Dxx

 “Device type:” Select “Generic Linux Device” from the pick list

N.B. Automatically updates Device

 “Sysroot”: Click “Browse…” and navigate to desired path

o /home/ghguest/GrayhillDisplayPlatform/sysroot-target

58 Grayhill

 Click “Open”

o C:\QtGhSupport\GrayhillDisplayPlatform\sysroot-target

 Click “Select Folder”

“Compiler: C:” Select “ARM-GCC” from the pick list

“Compiler: C++:” Select “ARM-G++” from the pick list

“Debugger:” Select “3Dxx Target Debugger” from the pick list

Grayhill 59

“Qt version:” Select “Qt-5.12.2-3Dxx” from the pick list

N.B. The selected names must match those used when creating the

various kit sub-components

Summary

 Verify contents are correct

 Click “OK”

Now that a Qt kit is configured; it is possible to develop, build, test, debug,

run and enjoy Qt applications.

60 Grayhill

Appendix B: Configuring a 3Dxx Project

N.B. This appendix is included for reference and is not a required

installation step; Grayhill automatically configures the project as part of the

support file installation.

This section details how to setup and configure a project for the 3Dxx

Display.

If not already running, launch Qt Creator. (See

Grayhill 61

Build and Run 3Dxx Embedded Application)

Open a project from “Qt Creator” main window click on “Open Project”

button.

N.B. If present, a previous project can be opened by clicking on the project

name listed below “Recent Projects”.

62 Grayhill

 An “Open File” dialog window will appear

 Navigate to the 3Dxx Demo project’s “.pro” file for either Linux or

Windows as illustrated below

o /home/GrayhillExamples/ghQmlDemo

o C:\QtGhSupport\GrayhillExamples\gh7indemo\gh7indemo.pro

 Click “Open”

Grayhill 63

If the “project.pro.user” file is missing, which is normal if the project has

never been opened before, a “Configure Project” dialog appears. If this

dialog doesn’t appear, proceed to where the “Projects” icon is selected.

If the “Configure Project” dialog appears (remember screen shot

illustrations are for reference purposes and may not reflect current

observations)

“Desktop Qt 5.9.3 MinGW 32bit”

 Expand by clicking on “Details”

o Unselect “Release”

o Unselect “Profile”

“Qt-5.9.3-3Dxx”

 Expand by clicking on “Details”

 Select “Qt-5.9.3-3Dxx” (this selection will select the three boxes

below)

o Unselect “Release”

o Unselect “Profile”

64 Grayhill

 Click “Configure Project”

Grayhill 65

 On the main “Qt Creator” window select “Projects”

 If the desired kit is not shown see

Appendix A: Configuring a Manual Qt Kit for Grayhill Displays

N.B. Clicking “Manage Kits” is the same as selecting “Tools  Options”

“Active Project” is a drop down pick list with the active project shown.

“Build & Run” lists the available kits.

N.B. The selected kit is emphasized in bold. A kit (set of utilities) is how the

project will be built, e.g. the main kit difference between desktop and target

is the compiler as the Qt-5.12.2-3Dxx kit uses a cross compiler for the

display.

N.B. Clicking on an actual kit name selects either Build or Run (depending

on which one was previously selected)

66 Grayhill

Build

This section describes how to configure the example project for the target

(3Dxx).

 Select “Build”

 Expand the Details tab associated with qmake (under Build Steps)

 “Additional arguments”

o Enter “hw_present=yes target=3D70” – N.B. This is a case
sensitive field.

N.B. Parameters are automatically added to the “effective qmake call”

command syntax. This field is configured based on the actual target

hardware display size. The processing of these arguments is in the .pro file

for the project.

The above image also shows two custom steps, the first used for versioning

and the second for camera configuration. Kernel 4.1.15 will support multiple

camera views on the 3D70 and 3D2104. These are only supported on the

Linux VM.

Grayhill 67

Windows Reference

Build Steps

 Additional arguments (see Linux screen capture above)

 Override make  C:\Qt\Tools\mingw73_32\bin\mingw32-make.exe

Clean Steps

 Override make  C:\Qt\Tools\mingw73_32\bin\mingw32-make.exe

Build Environment

 Path Append ;C:\Qt\5.12.2\mingw73_32\bin

68 Grayhill

Run/Deployment

This section describes how to compile and deploy the example project to

the target (3Dxx).

 Select “Run”

 Deployment

o Method: Deploy to Remote Linux Host (default)

o Files to deploy:

Local File Path location on host (auto-populated)

Remote Directory location on target (auto-populated)

N.B. File information may not populate until after a build is done.

 Expand “Details” for “Upload files via SFTP”

 Make sure neither box is selected

N.B. On rare occasions, Qt Creator thinks the files have already been

deployed and will not re-send the files to the target; disabling this

functionality avoids the situation.

Grayhill 69

 Save! File  Save All

70 Grayhill

 Build options

Build Let Qt Creator decide what is out of date

Rebuild Force Qt creator to re-compile everything

Clean Remove existing artifacts generated by previous builds

Run Deploy the executable to the target and execute the image

Grayhill 71

 Build the image for the target by clicking the green triangle

The bottom ribbon of Qt Creator has various panes (views) that can be

examined. “Application Output” is shown; this pane is also where qDebug

messages will be output.

Click the paintbrush icon to clear the contents.

Click the red square to terminate the target session.

N.B. Errors and issues are summarized in the “Issues” tab.

72 Grayhill

Appendix C: Debugging

Let’s face it; code never initially does what it is supposed to do; but rather

what it was told to do! Luckily, Qt Creator has a built-in debugger!

N.B. In order to debug QML, then file(s) must be list in the QML folder. If

they are not, then check to make sure qtquickcomplier is not set in the .pro

file. Also verify that “Enable Qt Quick Compiler” is not checked in Build for

qmake step.

Additional debugging information can be found by Googling “qt debugging”

which includes the following link.

https://doc.qt.io/qtcreator/creator-debugging.html

Debugger stepping option icons (Mouse over the icons for a description)

 Continue

 Stop

 Step Over <F10>

 Step In <F11>

 Step Out <Shift>+<F11>

The debugger tool bar icon’s functionality are also available under the

Debug drop down menu.

Grayhill 73

 Load ghQmlDemo

 Select the “Edit” view

 Expand contents of ghQmlDemo  QML  qml

74 Grayhill

 Select “LightingForm.qml”

 Add a breakpoint by left clicking in the gutter at line 34 (tractor.source

= …)

 Verify building for target and configuration parameters are set

 Click Green triangle with cute little bug!

The code begins to execute once compiled (the project may re-compile) and

then hits the breakpoint. This happens during the initial loading of the form.

Press <F5> to Continue (or click on continue icon in the Debugger bar).

 Select the lighting screen

 Click on the 8th lighting level

Grayhill 75

 Execution will stop (the display will not update, as the breakpoint is at

the point where the lighting level image is loaded)

 Expand “this” and scroll down to value to see the new value

76 Grayhill

Appendix D: Setting up a 3Dxx Qt Program to Run at Boot Up

This section describes how to configure a program to automatically execute

at boot up.

 Open a terminal window on the 3Dxx dsisplay (Error! Reference

source not found. describes how to launch “PuTTY”)

 Create5 a launch script for the desired application

 Explanation

cd /etc/init.d change into proper directory
echo “#! /bin/sh –l treat as login (runs profile)
/opt/ghQmlDemo/bin/ghQmlDemo &” > launchQtApp

 spawn application process
cat launchQtApp verify contents
chmod 755 launchQtApp make script executable

5
 vi (text editor) can also be used for those familiar with vi, instead of the command line

Grayhill 77

 Create a link to the launch script created above

 Explanation

cd /etc/rc.d set into proper directory
ln –s /etc/init.d/launchQtApp S12qtApp create soft link to executable file
ls –l S12qtApp verify link creation

N.B. Do not try to launch multiple Qt applications at boot up or try to launch

the ghvehicleapp application along with a Qt application as they conflict with

one another.

N.B. When switching from running one application to another, even

between Qt applications, it is a good idea to do a reboot of the 3Dxx Display

in between to make sure that the hardware is properly reset. This can be

done by entering the “reboot” command on the 3Dxx Display Linux console.

78 Grayhill

Appendix E: Interfacing 3Dxx Hardware from QT Software

This section explains how to access the functionality of these components.

The programming interfaces and provided API functions are covered, with

the syntax and parameters defined. Sample code is also provided where

appropriate.

The 3Dxx Display contains the following custom component interfaces:

 Analog Input driver (Model 3D70 only)

 Audio Output (Model 3D70 only)

 Buzzer (Models 3D70, 3D2104)

 Camera driver

 CAN driver

 Digital I/O driver

 LCD

 LCD Backlight

Grayhill 79

Analog Inputs (Model 3D70 only)

The Model 3D70 Display has two analog inputs. Analog Input 1 is

connected to Pin 4 on Connector B and Analog Input 2 is connected to Pin 5

on Connector B. The Analog Inputs can be used to read resistance, voltage,

or current with respect to the analog return pin (pin 7 on Connector B).

The following Grayhill files are required:

 ghiolib.h (header)

 libghiodrv.so (linker)

Interface

A Qt application may configure or read an analog input pin by calling the

appropriate C library function as described below.

#define GHIOLIB_CH1 (0x01)
#define GHIOLIB_CH2 (0x02)

#define GHIOLIB_MAX_ANALOG_IN (2)

#define GHIOLIB_ANALOG_5V (0)
#define GHIOLIB_ANALOG_1500OHM (1)
#define GHIOLIB_ANALOG_10V (2)
#define GHIOLIB_ANALOG_5000OHM (3)
#define GHIOLIB_ANALOG_20MA (4)

#define GHIOLIB_RET_OK 0
#define GHIOLIB_RET_ERROR 1
#define GHIOLIB_RET_NOTSUPPORTED 2

typedef struct _ADCVALUES
{
 uint16_t adcch;
 uint16_t adcvref;
 uint16_t adcstatus;
 uint16_t adcconfig;
} ADCVALUES, *PADCVALUES;

80 Grayhill

ghiolib_setADCcfg

This function configures an analog input for one of five different reading

modes.

Syntax
int ghiolib_setADCcfg(int ch, uint8_t config);

Type Name in/out Description Values

int ch in Channel to
configure

GHIOLIB_CH1
GHIOLIB_CH2

uint8_t config in Channel
configuration

GHIOLIB_ANALOG_5V
GHIOLIB_ANALOG_10V
GHIOLIB_ANALOG_1500OHM
GHIOLIB_ANALOG_5000OHM
GHIOLIB_ANALOG_20MA

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

ghiolib_getADCin

This function reads a value from an analog input pin.

Syntax
int ghiolib_getADCin(int ch, PADCVALUES p);

Type Name in/out Description Values

int ch in Channel to
read

GHIOLIB_CH1
GHIOLIB_CH2

PADCVALUES P out Read value is returned in member “adcch” of this
structure. Other items in this structure can be
ignored.

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORTED

Grayhill 81

Sample Qt Code

#include <QDebug>

// For access to ghiolib
typedef u_int16_t uint16_t;
typedef u_int8_t uint8_t;
#ifdef __cplusplus
extern "C" {
#endif

#include "ghiolib.h"

#ifdef __cplusplus
}
#endif

int channel = 0;
ADCVALUES analogData;
int gpioStatus;

// Set analog input 1 to read 0 to 10 volts
gpioStatus = ghiolib_setADCcfg(channel + 1, GHIOLIB_ANALOG_10V);
if (GHIOLIB_RET_OK != gpioStatus)
{
 qDebug("ERROR (%d) doing ghiolib_setADCcfg on channel: %d\n",
 gpioStatus, channel + 1);
}

// Get current reading
gpioStatus = ghiolib_getADCin(channel + 1, &analogData);
if (GHIOLIB_RET_OK != gpioStatus)
{
 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel: %d\n",
 gpioStatus, channel + 1);
}
qDebug("Reading from channel %d is %d millivolts\n", channel + 1,
analogData.adcch);

82 Grayhill

Audio Output (Model 3D70 only)

The Model 3D70 Display has the ability to play an mp3 audio file and send

the audio output to a monaural line out (pins 1, AUDIO OUT, and 2, AUDIO

RET, on the B connector).

There are no required header or linker files, but the mpg123 application

must be installed on the display and its location be in the search PATH.

Interface

A Qt application can start playing an mp3 audio file and can stop the playing

of the audio file using a Linux utility called mpg123.

Sample Qt Code

//
// To play mp3 file “sounds.mp3”
//
// Note that by placing mp3 file in “images” folder, Qt will
// automatically download the mp3 file to the target with the
// other image files being used.
//
// Command shown to play mp3 file will first stop playing any mp3
// file that may already be playing.
//
system("test `pidof mpg123` && kill `pidof mpg123` ;"
 "mpg123 -q images/sounds.mp3 &");

// To stop playing mp3 file (if any)
system("test `pidof mpg123` && kill `pidof mpg123`");

Grayhill 83

Buzzer (Models 3D70, 3D2104)

The Model 3D70 and 3D2104 Displays have an internal buzzer that can be

sounded on command.

There are no additional required files.

Interface

A Qt application can turn the internal buzzer on or off by sending the proper

number to the buzzer control file.

Sample Qt Code

#include <QString>
#include <QDebug>

QFile buzzerFile;
bool buzzerFileOpen;

buzzerFile.setFileName("/sys/class/backlight/pwm-
backlight.3/brightness");
buzzerFileOpen = buzzerFile.open(QIODevice::WriteOnly |
QIODevice::Text);

if (false == buzzerFileOpen)
{
 qDebug("Error opening buzzer file\n”);
}

// To turn buzzer ON
if (true == buzzerFileOpen)
{
 QTextStream buzzerOut(&buzzerFile);
 buzzerOut << 10;
}

// . . .

// To turn buzzer OFF
if (true == buzzerFileOpen)
{
 QTextStream buzzerOut(&buzzerFile);
 buzzerOut << 0;
}

84 Grayhill

Camera Driver Interface

The Grayhill 3Dxx Display device can contain multiple camera inputs. NTSC

and PAL format video inputs are supported by modifying the camera input

sensor parameters. The camera output can be displayed on the LCD. The

following camera display parameters can be modified:

 Window parameters – window size and window position

 Color parameters – brightness, contrast, saturation and hue

 Rotation

 Input sensor parameters – provides support for NTSC and PAL

formats

 Camera output to LCD foreground or background with color key

Camera output is 30 frames per second (fps).

The following Grayhill files are required:

 libghiodrv.so (linker)

N.B. Only one camera input can be active at a time with kernel 3.0.35.

Kernel 4.1.15 will support multiple camera views on the 3D2104 and 3D70.

Grayhill 85

Data Types

typedef struct _SENSORPARAMS // Must be set according to camera
input type
{ // NTSC PAL
 unsigned int top; // 4 5
 unsigned int left; // 0 4
 unsigned int height; // 480 567
 unsigned int width; // 640 640
} SENSORPARAMS, *PSENSORPARAMS;

#define FOREGROUND (1)
#define BACKGROUND (0)

#define FB_DEV_0 (0) // GRAPHICS being sent to /dev/fb0
#define FB_DEV_1 (1) // GRAPHICS being sent to /dev/fb1

//
// These are the only allowed values for VIDEO_COLOR_KEY_xxx
//
#define VIDEO_COLOR_KEY_BLACK (0x00000000)
#define VIDEO_COLOR_KEY_RED (0x00FF0000)
#define VIDEO_COLOR_KEY_GREEN (0x0000FF00)
#define VIDEO_COLOR_KEY_BLUE (0x000000FF)
#define VIDEO_COLOR_KEY_YELLOW (0x00FFFF00)
#define VIDEO_COLOR_KEY_CYAN (0x0000FFFF)
#define VIDEO_COLOR_KEY_MAGENTA (0x00FF00FF)
#define VIDEO_COLOR_KEY_WHITE (0x00FFFFFF)

typedef struct _DISPLAYPARAMS
{
 unsigned int top; // top left window y-coordinate
 unsigned int left; // top left window x-coordinate
 // (must be divisible by 4)
 unsigned int height; // window vertical size
 unsigned int width; // window horizontal size
 // NOTE: top + height must not exceed
 // height of display
 // and left + width must not exceed
 // display width
 unsigned int rotate; // 0-7, see below
 unsigned int fg; // FOREGROUND or BACKGROUND +
 // VIDEO_COLOR_KEY_xxx
} DISPLAYPARAMS, *PDISPLAYPARAMS;

86 Grayhill

The camera output always operates in native landscape mode. Use the

following rotation values to support other display and camera orientations:

Value Rotation

0 No rotation

1 Vertical flip

2 Horizontal flip

3 180

4 90 right

5 90 right with vertical flip

6 90 right with horizontal flip

7 90 left

#define HUE_CODE_00 (0x00)
#define HUE_CODE_7F (0x7F)
#define HUE_CODE_80 (0x80)

typedef struct _COLORPARAMS
{
 unsigned int brightness; // 0-255
 unsigned int saturation; // 0-255
 unsigned int hue; // HUE_CODE_00, HUE_CODE_7F, or
 // HUE_CODE_80
 unsigned int contrast; // 0-255
} COLORPARAMS, *PCOLORPARAMS;

Grayhill 87

Interface

The Qt application interfaces with the Camera driver using the Camera

class.

Camera::Camera

Camera class constructor

Syntax
Camera:: Camera (int camnum, int fbdev = FB_DEV_0);

Type Name in/out Description Values

int camnum in Camera
Number

3D50 : 1-2
3D70 : 1-3
3D2104: 1-4

int fbdev in Frame buffer
device

See below

The "fbdev" value indicates whether the GRAPHICS are being sent to fb0 or

fb1.

When GRAPHICS are being sent to fb0, then video will be sent to fb1 and

only foreground mode is allowed. This is the default assumed if "fbdev" is

missing.

If GRAPHICS are being sent to fb1, then video will be sent to fb0 and both

foreground and background modes are supported. In order to send

GRAPHICS to fb1, add this parameter to the command line that launches

Qt: -display LinuxFb:/dev/fb1

88 Grayhill

Camera::setdisplayparams

Sets the following display window parameters

 origin

 window size

 rotation

 foreground or background with color key (When using background

mode the camera video only shows through where the graphics data

is set to the color that matches the specified color key. Graphics of

any other color will appear on top of the camera video image.)

Syntax
int Camera::setdisplayparams(PDISPLAYPARAMS p);

Type Name in/out Description Values

PDISPLAYPARAMS p in refer to DISPLAYPARAMS structure

int Return value 0 – success
-1 - failure

Camera::setcolorparams

Sets the following camera color parameters

 Brightness

 Saturation

 Contrast

 Hue

Syntax
int Camera::setcolorparams(PCOLORPARAMS p);

Type Name in/out Description Values

PCOLORPARAMS p in refer to COLORPARAMS structure

int Return value 0 – success
-1 - failure

Grayhill 89

Camera::setsensorparams

Sets the camera sensor parameters

Syntax
int Camera::setsensorparams(PSENSORPARAMS psensor);

Type Name in/out Description Values

PSENSORPARA
MS

psensor in refer to SENSORPARAMS structure

int Return value 0

Camera::show

Enables or disables the camera

Syntax
int Camera::show(int enable);

Type Name in/out Description Values

int enable in Turn on/off
camera

 0 – disable
 1 - enable

int Return value 0 – success
-1 - failure

90 Grayhill

Sample Code

#include “camera.h”

COLORPARAMS color;
DISPLAYPARAMS disp;
int cameranum = 1; // camera input 1

Camera cam(cameranum);

disp.top = 0;
disp.left = 80;
disp.height = 480;
disp.width = 640;
disp.rotate = 4; // rotate 90 degree right
disp.fg = FOREGROUND;
// configure display parameters
cam.setdisplayparams(&disp);

// start camera
cam.show(1);

// change color parameters
color.brightness = 50;
color.saturation = 128;
color.contrast = 128;
color.hue = 0;
// configure color parameters
cam.setcolorparams(&color);

....

// stop l+camera
cam.show(0);

Grayhill 91

CAN Driver Interface

The 3D50 and 3D70 displays includes two CAN controller modules.

Available CAN ports are CAN1 and CAN2. The 3D2104 display includes

three CAN controller modules. Available CAN ports are CAN1, CAN2, and

CAN3. The CAN controller supports both standard and extended frames.

The following Grayhill files are required:

 libghiodrv.so (linker)

Data Types

/*
 * special flag bits for the CAN_ID
 */
#define CAN_EFF_FLAG 0x80000000U /* EFF flag (add to ID to
 activate 29-bit ID) */
#define CAN_RTR_FLAG 0x40000000U /* remote transmission request */
#define CAN_ERR_FLAG 0x20000000U /* error frame */

struct _CANMSG
{
unsigned int ID;
unsigned int Length; // Data Length Code of the Msg (0..8)
unsigned char Data[8];
};
typedef struct _CANMSG CANMSG, *PCANMSG;

Interface

The Qt application interfaces with the CAN bus driver using the CAN class.

CAN::CAN

CAN class constructor

Syntax
CAN::CAN(int num);

Type Name in/out Description Values

int num in CAN port
number

3D50 : 1-2
3D70 : 1-2
3D2104: 1-4

92 Grayhill

CAN::OpenPort

Opens the CAN socket

Syntax
int CAN::OpenPort(void);

Type Name in/out Description Values

int Return value 0 – success
-1 - failure

CAN::WritePort

Writes a single CAN frame to the CAN port.

Syntax
int CAN::WritePort(PCANMSG TxMsg);

Type Name in/out Description Values

PCANMSG TxMsg in CAN frame to
be written

int Return value 0 – success
-1 - failure

CAN::ReadPort

Attempts to read a single CAN frame from the CAN port. Note that the CAN

socket is configured to be non-blocking, so calls to ReadPort will return

even if there is no data.

Syntax
int CAN::ReadPort(PCANMSG RxMsg);

Type Name in/out Description Values

PCANMSG RxMsg in CAN frame
received

int Return value Bytes read or (-1) for
failure

Grayhill 93

CAN::ClosePort

Closes the CAN socket

Syntax
void CAN::ClosePort(void);

Sample Code

#include “can.h”

CANMSG TxMsg;
CANMSG RxMsg;
int bytesread = 0;
int cannum = 1; // CAN1

/* Init TX and RX message */
TxMsg.ID = 0x23;
TxMsg.Length = 8;
for (int i=0; i<8; i++)
 TxMsg.Data[i] = (0x11 * (i+1)); // fill random data
memset((void *)&RxMsg, 0, sizeof(CANMSG));

// CAN1
CAN can(cannum);
can.OpenPort();
can.WritePort(&TxMsg);
do
{
 bytesread = can.ReadPort(&RxMsg);
 // add delay
} while (bytesread != sizeof(CANMSG));
can.ClosePort();

94 Grayhill

Digital I/O Driver Interface

The Model 3D50 Display, Model 3D70 Display, and Model 3D2104 Display

each have four digital inputs and four digital outputs, but they are configured

differently and these differences will be explained. Each device uses the

same library calls to read the digital inputs and set the digital outputs.

On the 3D50 Five Inch Display Pin 4 on its connector is a dedicated input

only pin. Pin 5 is a dedicated output only pin. Pins 6, 7, and 8 are shared I/O

pins that can be used to output a signal or input a signal.

On the Model 3D70 Seven Inch Display each of the four inputs are

dedicated and so operate independently of any output pins.

On the Model 3D2104 10.4 Inch Display all digital output pins are shared I/O

pins that can be used to output a signal or input a signal.

For a shared I/O pin to function as an input, the corresponding output must

be set low.

The following table summarizes all of the digital I/O pins for each model:

Model 3D50 Pins Model 3D70 Pins Model 3D2104 Pins

Input 1 (Pin 4) Input 1 (Pin 4 Connector A) Input 1 or Output 1 (Pin 10)
Input 2 or Output 2 (Pin 6) Input 2 (Pin 8 Connector B) Input 2 or Output 2 (Pin 21)
Input 3 or Output 3 (Pin 7) Input 3 (Pin 9 Connector B) Input 3 or Output 3 (Pin 32)
Input 4 or Output 4 (Pin 8) Input 4 (Pin 10 Connector B) Input 4 or Output 4 (Pin 9)
Output 1 (Pin 5) Output 1 (Pin11 Connector B)
 Output 2 (Pin12 Connector B)
 Output 3 (Pin13 Connector B)
 Output 4 (Pin14 Connector B)

The following Grayhill files are required:

 ghiolib.h (header)

 libghiodrv.so (linker)

Grayhill 95

Interface

A Qt application may set or get the digital I/O pin states by calling the

appropriate C library function as described below.

#define GHIOLIB_CH1 (0x01)
#define GHIOLIB_CH2 (0x02)
#define GHIOLIB_CH3 (0x03)
#define GHIOLIB_CH4 (0x04)

#define GHIOLIB_MAX_DIGITAL_IO (4)
#define GHIOLIB_DIG_IN_FLOAT (0)
#define GHIOLIB_DIG_IN_PULL_DN (1)
#define GHIOLIB_DIG_IN_PULL_UP (2)

#define GHIOLIB_RET_OK 0
#define GHIOLIB_RET_ERROR 1
#define GHIOLIB_RET_NOTSUPPORTED 2

ghiolib_setDigIncfg (Model 3D70 only)

Sets input pin pull-up/pull-down configuration.

Syntax
int ghiolib_setDigIncfg(int ch, uint8_t config);

Type Name in/out Description Values

int ch in Input pin to configure GHIOLIB_CH1
GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t config in pin configuration GHIOLIB_DIG_IN_FLOAT
GHIOLIB_DIG_IN_PULL_DN
GHIOLIB_DIG_IN_PULL_UP

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORT
ED

96 Grayhill

ghiolib_getDigIn

This function reads the state of an input pin.

Syntax
int ghiolib_getDigIn(int ch, uint8_t *value);

Type Name in/out Description Values

int ch in Input pin to read GHIOLIB_CH1
GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t value out pin status 0 – input low
1 – input not low

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORT
ED

ghiolib_getDigOut

Reads the current state of an output pin.

Syntax
int ghiolib_getDigOut(int ch, uint8_t *value);

Type Name in/out Description Values

int ch in Output pin to read GHIOLIB_CH1
GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t value out pin status 0 – output low
1 – output not low

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORT
ED

Grayhill 97

ghiolib_setDigOut

This function sets the current state of an output pin.

Syntax
int ghiolib_setDigOut(int ch, uint8_t value);

Type Name in/out Description Values

int ch in Output pin to set GHIOLIB_CH1
GHIOLIB_CH2
GHIOLIB_CH3
GHIOLIB_CH4

uint8_t value in pin status 0 – set pin output low
!0 – set pin output high

int Return value GHIOLIB_RET_OK
GHIOLIB_RET_ERROR
GHIOLIB_RET_NOTSUPPORT
ED

Sample Qt Code

#include <QDebug>

// For access to ghiolib
typedef u_int16_t uint16_t;
typedef u_int8_t uint8_t;

#ifdef __cplusplus
extern "C" {
#endif

#include "ghiolib.h"

#ifdef __cplusplus
}
#endif

int channel;
uint8_t digValue;
int gpioOutput;
int gpioInput;
int gpioStatus;

// Set inputs to pull down mode and read current inputs and outputs
// for each channel
gpioOutput = 0;
gpioInput = 0;
for (channel = 0; channel < GHIOLIB_MAX_DIGITAL_IO; channel++)
{
 // Set input to pull down mode

98 Grayhill

 gpioStatus = ghiolib_setDigIncfg(channel + 1,
GHIOLIB_DIG_IN_PULL_DN);
 if ((GHIOLIB_RET_OK != gpioStatus) && (GHIOLIB_RET_NOTSUPPORTED
!= gpioStatus))
 {
 qDebug("ERROR (%d) doing ghiolib_setDigIncfg on channel:
%d\n",
 gpioStatus, channel + 1);
 }

 // Read current output setting
 digValue = 0;
 gpioStatus = ghiolib_getDigOut(channel + 1, &digValue);
 if (GHIOLIB_RET_OK != gpioStatus)
 {
 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel:
%d\n",
 gpioStatus, channel + 1);
 }
 else
 {
 if (1 == digValue)
 {
 gpioOutput |= (1 << channel);
 }
 }

 // Read current input
 digValue = 0;
 gpioStatus = ghiolib_getDigIn(channel + 1, &digValue);
 if (GHIOLIB_RET_OK != gpioStatus)
 {
 qDebug("ERROR (%d) doing ghiolib_getDigIn on channel:
%d\n",
 gpioStatus, channel + 1);
 }
 else
 {
 if (1 == digValue)
 {
 gpioInput |= (1 << channel);
 }
 }
}
qDebug("GPIO initial output: 0x%x input: 0x%x\n", gpioOutput,
gpioInput);

Grayhill 99

LCD

The Grayhill 3Dxx Series Display uses a 16 bit per pixel LCD screen. The

pixel dimensions of various 3Dxx Display products are shown in the section

Error! Reference source not found.. The default orientation of the frame

buffer is landscape mode (wider pixel dimension is in horizontal direction).

LCD Backlight

The LCD Backlight setting is a value between 0 (minimum) and 100

(maximum) inclusive. The brightness value can be set in the file

/sys/class/backlight/pwm-backlight.0/brightness

Sample Code

int value = 80;
QFile file("/sys/class/backlight/pwm-backlight.0/brightness");
if (file.open(QIODevice::WriteOnly | QIODevice::Text))
{
 QTextStream out(&file);
 out << value;
 file.close();
}

100 Grayhill

Appendix F: Setting 3Dxx Flash File System R/W Mode

To immediately configure the 3Dxx Display file system for read-write mode

enter the following command in a terminal window on the display:

 mount –o remount,rw /

The above command only remains in effect until the next reboot.

The 3Dxx installation script utilizes the following technique to configure the

3Dxx Display file system to be in read-write mode to make Qt development

more convenient.

The above command is placed in a script file which is invoked during display

initialization. This file /home/writeablefs is called via the following link:

 ln –s /home/writeablefs /etc/rc.d/S03writeablefs

To leave the display in read-only mode:

 mv /home/writeablefs /home/writeablefs.bak

Alternatively, to set the 3Dxx display file system to read-write mode on boot-

up, edit the file /etc/init.d/rc-once and add the above command to the end of

this file just before the final “exit” command like this:

…
case "$1" in
 start)
 do_start >&2
 ;;
 *)
 echo "Usage: $0 {start}" >&2
 exit 1
 ;;
esac

mount -o remount,rw /

exit 0

To leave the 3Dxx Display file system set to read-only mode on boot-up,

edit the file /etc/init.d/rc-once and remove the “mount –o remout,rw /” line

near the end of the file (or comment it out by putting a “#” in column one of

that line).

Grayhill 101

Appendix G: Building Qt Library Source (optional)

N.B. This appendix is included for reference and is not a required step.

N.B. Library building is supported only under Linux.

This section describes the procedure to download and build the Qt library

source code.

Please reference http://doc.qt.io/qt-5/windows-requirements.html for

additional information.

This procedure relies on Qt Creator and the Grayhill support files being

installed.

Grayhill provides an archive script with the following files:

o mkLibs script used to build the libraries

o qmake.conf Grayhill modified configuration file

o qt_configure.prf Grayhill modified rule file

o qtLibSrcInstall Qt library installation script

o updInc fix incorrectly generated makefile

 Download the Qt library installation archive from Grayhill

o qtLibSrc5122.tgz

 Copy/move the downloaded file to /home/ghguest

 Un archive

o tar xf qtLibSrc5122.tgz

 Run installer (this fetches the library source from Qt)

o ./qtLibSrcInstall

 Build Libs

o Follow instructions provided by installation script; mkLibs
provides the root password as needed

N.B. To reduce build time, increase the VM’s processor count. This needs

to be done in a VM powered off state.

102 Grayhill

Appendix H: Dynamic IP Address

To find the 3Dxx display’s Ethernet IP address, issue the following

command in a terminal window on the display

 ifconfig eth0

The IP address of the 3Dxx Display is displayed after the tag “inet addr:”

and is circled in red in the example output shown below.

If the tag “inet addr:” is not present; enter these commands and try the

“ifconfig eth0” command again

 ifdown eth0

 ifup eth0

Please make a note of the IP address, in this example the IP address is

192.168.40.118

Grayhill 103

Appendix I: Static IP Address

If using a static IP address for the display, once the address is determined:

 cp /etc/network/interfaces /etc/network/interfaces.bak

 vi /etc/network/interfaces

 replace lines

iface eth0 inet dhcp
 udhcpc_opts -t 5 -T 3 -A 20 -S &

 with

iface eth0 inet static
 address 192.168.40.118
 netmask 255.255.255.0

 Google “linux interface file” for additional information.

