

Grayhill 3Dxx Display Products

Setup and Usage of Qt Development Software  Linux

August 31, 2017 Page 2

Revision History

Revision Date Description

A 09/19/2014 Original Release

B 09/25/2014 Many Refinements.

C 12/11/2015 Added note about hardware needed to support
Ethernet interface.

D 04/27/2016  Added alpha blending and PAL support
information to camera interface section

 Changed instructions to utilize VirtualBox disk
image with Qt pre-installed.

E 11/11/2016 Added support for Model 3D70 (Seven Inch
Display)

F 04/04/2017 Added support for Qt-5.6.2

G 05/17/2017 Corrected some errors

H 08/30/2017 Added support for Model 3D2104 (10.4 Inch
Display)

August 31, 2017 Page 3

Table of Contents

INTRODUCTION ..4

SUPPORTED HARDWARE PRODUCTS ..4

RECOMMENDED EQUIPMENT FROM GRAYHILL ..5

OTHER RECOMMENDED EQUIPMENT ...5

SOFTWARE REQUIRED ...5

INSTALLATION OVERVIEW ...6

INSTALLATION OF VIRTUALBOX ...6

SETUP VIRTUALBOX LINUX ENVIRONMENT .. 17

SETUP VIRTUALBOX SERIAL PORT .. 21

STARTING LINUX DEVELOPMENT ENVIRONMENT FROM VIRTUALBOX 25

UPDATING QT DEVELOPMENT ENVIRONMENT ... 26

CONFIGURING 3DXX DISPLAY FOR QT DEVELOPMENT ... 27

CHOOSING A 3DXX QT WIDGET DEMO PROJECT ... 36

CONFIGURE A 3DXX DEMO PROJECT TO BUILD AND RUN (QT-4.8.6) 37

BUILD AND RUN 3DXX DEMO PROJECT DESKTOP VERSION (QT-5.5.1) 47

BUILD AND DEBUG 3DXX DEMO PROJECT TARGET VERSION (QT-4.8.6) 50

CONFIGURE A 3DXX DEMO PROJECT TO BUILD AND RUN (QT-5.6.2) 55

BUILD AND RUN 3DXX DEMO PROJECT TARGET VERSION (QT-5.6.2) 60

BUILD AND RUN QML DEMONSTRATION PROGRAM (QT-5.6.2) ... 64

SETTING UP 3DXX QT PROGRAM TO RUN AT BOOT UP .. 65

INTERFACING 3DXX HARDWARE FROM QT SOFTWARE .. 67

LCD ... 67
LCD Backlight .. 68

Camera Driver Interface .. 68

CAN Driver Interface .. 73
Digital I/O Driver Interface ... 76

Analog Inputs (Model 3D70 only) ... 80
Buzzer (Models 3D70, 3D2104) ... 83

Audio Output (Model 3D70 only) .. 84

APPENDIX A: VIRTUALBOX LINUX PASSWORDS .. 85

APPENDIX B: SETTING 3DXX FLASH FILE SYSTEM R/W MODE ... 86

August 31, 2017 Page 4

Introduction
This Usage Guide describes how to setup and use a Qt-based development environment for a Grayhill

3Dxx Display product. This Qt cross-platform development environment runs under Linux, but the Linux

system is hosted on a Windows 7 PC via the Oracle VirtualBox software. This document also describes

how to develop code for a 3Dxx Display product in the Qt IDE, how to access various 3Dxx hardware

features via this code, and how to load the developed application code onto a 3Dxx Display product.

Two versions of Qt are supported: Qt-4.8.6 which uses a frame buffer interface and Qt-5.6.2 which uses

EGFLS and can support QtQuick and QML. The Qt-4.8.6 environment uses QWS command line

parameters that can rotate the display by 0, 90, 180, or 270 degrees. The Qt-5.6.2 version does not use

QWS and can only support display output in the native landscape mode.

Currently the following 3Dxx Display models are supported on this Qt-based development environment:

- Model 3D50 Five Inch Display

- Model 3D70 Seven Inch Display

- Model 3D2104 10.4 Inch Display

The different features of these displays will be described below and differences in the installation process

for each model will be explained.

This document is intended for use by software developers who are familiar with programming in C/C++

using the Qt framework. Experience developing applications for Linux platforms is a definite plus.

Supported Hardware Products
The Qt-based development environment is supported on the following Grayhill 3Dxx Color Display

Models:

 3D50 Five Inch Color Display (800 x 480 pixels and up to two CAN buses)

 3D70 Seven Inch Color Display (800 x 480 pixels and up to two CAN buses)

 3D2104 10.4 Inch Color Display (1024 x 768 pixels and up to three CAN buses)

The table below summarizes the key features of each of these models. Note that the features of a specific

product may vary depending on the purchased hardware configuration.

Model Number 3D50 3D70 3D2104

Display Size (inches) 5 7 10.4

Pixel Count (w x h) 800 x 480 800 x 480 1024 x 768

Touch Screen Input Yes Yes Yes

Real Time Clock Yes Yes Yes

CAN Ports 2 2 3

Camera Inputs 2 3 4

USB ports
1 (maintenance

only)

1 (maintenance

only)

1 (maintenance

only)

RS232
1 (maintenance

only)

1 (maintenance

only)

1 (maintenance

only)

Built-in Ethernet 0 1 1

Digital Input (dedicated) 1 4 0

August 31, 2017 Page 5

Model Number 3D50 3D70 3D2104

Digital Output

(dedicated)
1 4

0

Digital Input / Output 3 0 4

Analog Input 0 2 0

Audio Output No 1 channel No

Buzzer No Yes Yes

Recommended Equipment from Grayhill
If using Model 3D50 Five Inch Display:

 3D50DEV-100 3D50 Development Kit

If using Model 3D70 Seven Inch Display:

 3D70DEV-100 3D70 Development Kit

If using Model 3D2104 Display:

 3D2104DEV-100 3D2104 Development Kit

Other Recommended Equipment
Other Recommended Equipment (for all displays)

o An Ethernet port connected to a DHCP server that can be connected to the 3Dxx Display. This

port should be on the same network as the development PC.

o PC Running Windows XP* or Windows 7 with the following features:

 3 GB RAM (minimum)

 250 GB available hard drive space (minimum)

 Ethernet port

 RS232 Port

 Internet Access

* Note: if using Windows XP make sure that exFAT file system support has been installed

in order to read distribution media (http://www.microsoft.com/en-

us/download/details.aspx?id=19364)

Software Required
 3Dxx Qt Software Kit (that is applicable for both models) which includes:

o Grayhill 3Dxx Linux Qt Rev G.ova

o 3Dxx_Qt_Installation_RevH.zip which includes:

 VMSharedFolder

 3Dxx_Qt_Usage_Guide.pdf (this document)

 3D50DEV Quick Start Guide.pdf

 3D70DEV Quick Start Guide.pdf

 Qt User Notes.pdf

August 31, 2017 Page 6

The files “Grayhill 3Dxx Linux Qt Rev G.ova” and “3Dxx_Qt_Installation_RevH.zip” can be

downloaded from the Grayhill website at:

http://www.grayhill.com/qt43d/

Installation Overview
This is a brief overview of the installation steps for the Qt-based development environment for a Grayhill

3Dxx Display.

 First connect the 3Dxx Development Kit hardware to the PC being used. This includes connecting

the serial port and Ethernet port interfaces. For the 3D50 Display this procedure is described in

detail in the document “3D50DEV Quick Start Guide.pdf” and for the model 3D70 Display it is

described in the document “3D70DEV Quick Start Guide.pdf”.

 Next the VirtualBox application will be downloaded from the internet and installed on the

development PC. This application allows one to run a virtual computer system in a window on the

PC. This means that all other Windows PC applications can be running along with this virtual

computer application. This virtual computer will be used to run a version of Linux. All Qt-based

development will be done under this Linux environment.

 Next the VirtualBox application will be configured. The only thing that the user must configure is

the serial port interface, but this procedure will be explained. Grayhill provides a pre-configured

image of Linux that has the Qt development environment already installed. (There is information

in the document Qt User Notes.pdf that explains how the Qt development software was

downloaded and installed but this information is included for reference only.)

 Then a Linux script will be run to update some items in the Qt development environment. This

script will only need to be run once.

 The serial and Ethernet links to the target 3Dxx Display hardware will be established. Another

Linux script will be run to configure the actual 3Dxx Display product to operate with Qt instead of

VUI Builder©. This second script will need to be run on each 3Dxx Display product that will be

operated with Qt.

 Finally instructions are provided on how to open and run a Qt demonstration project in either the

Linux desktop environment or on the 3Dxx Display target hardware. This demonstration project

shows how to use touch screen “buttons”, how to use touch screen swipes, how to set the 3Dxx

backlight, how to operate the 3Dxx camera input, and how to access and set the real time clock.

For the 3D70 Display there are also samples of using the audio output, the analog input, and the

internal buzzer.

Installation of VirtualBox
This section shows how to download and install VirtualBox Version 5.1.8. If a newer version is available,

it will probably work just fine, but the screen shots shown below may be different.

 Navigate to this web page: https://www.virtualbox.org/

https://www.virtualbox.org/

August 31, 2017 Page 7

 Click on “Download VirtualBox …” selection.

August 31, 2017 Page 8

 Click on download for VirtualBox 5.1.8 for Windows as shown below:

August 31, 2017 Page 9

 When the download completes, click on “Open” option. (Note that this download example was

done using a Chrome browser. If a different web browser is used then this open operation may

look different.)

 When the “Open File – Security Warning” appears, click on “Run”.

August 31, 2017 Page 10

 Next the following “Welcome…” dialog should appear. Click on “Next” button.

August 31, 2017 Page 11

 Next will appear this “Custom Setup” dialog. Do not make any changes, just click “Next” button.

CAUTION!

Make sure that the installation location is on a local disk drive, not a

network storage unit! This is because during installation the network

connections will be disconnected so that the VirtualBox can install network

adapter software and this will make network storage units inaccessible.

August 31, 2017 Page 12

 On the second “Custom Setup” screen the first three options may be adjusted as desired, but leave

the “Register file associations” option checked. When done, click “Next” button.

August 31, 2017 Page 13

 The following “Warning: Network Interface” dialog should appear next. Make sure that there are

no network accessing programs running (i.e. email) on the computer. Exit any such programs and

then click “Yes” button.

August 31, 2017 Page 14

 The next dialog is “Ready to Install” as shown here. Click on the “Install” button.

August 31, 2017 Page 15

 If a “User Account Control” window appears, click “Yes” button.

 If any “Windows Security” windows appear as shown below, click on “Install” button. Several

such windows may appear asking permission to install various driver software modules.

August 31, 2017 Page 16

 When installation is finished, this window should appear. Uncheck the “Start Oracle VM

VirtualBox…” selection and click the “Finish” button.

 Reboot computer at this time to re-establish network connections.

August 31, 2017 Page 17

Setup VirtualBox Linux Environment
 After computer reboots, copy the folder “VMSharedFolder” and all of its contents from the

“3Dxx_Qt_Installation_RevG.zip” file to a newly created file folder called “C:\VMSharedFolder”.

The files in this folder will be used later during Qt configuration, but this folder can be used after

that to transfer files between the Windows and Linux environments.

 Copy the file “Grayhill 3Dxx Linux Qt Rev G.ova” to any place on the development PC.

Remember the location of this copied .ova file as it will be needed later.

 Start the Oracle VM VirtualBox program. This screen should appear:

August 31, 2017 Page 18

 Click on “File -> Import Appliance” as shown below:

August 31, 2017 Page 19

 Click on the open folder icon as shown below and navigate to the previously copied file: “Grayhill

3Dxx Linux Qt Rev G.ova” and open it.

NOTE

The above .ova file is quite large and if distributed on a USB memory stick,

that memory stick must use exFAT format. If operating under Windows XP,

then the exFAT file system support package must be installed in order to

access this media (see note under Other Recommended Equipment for

more details).

August 31, 2017 Page 20

 Adjust any settings as appropriate, such as number of processors or RAM size and then click

“Import” button.

August 31, 2017 Page 21

Setup VirtualBox Serial Port
In order to access the 3Dxx Display Linux console, a serial port that operates at 115200 baud is required.

If the development PC has a built-in serial port that is going to be used for this purpose, then proceed with

the setup instructions below to configure the VirtualBox Serial Port. If a USB to serial port converter is

going to be used, then skip the VirtualBox Serial Port setup and continue with the step: Starting Linux

Development Environment from VirtualBox.

 Determine what COM port is assigned to the serial port that is going to be used. This can be

determined by accessing the Device Manager window and looking under the “Ports (COM &

LPT)” entry. In the example shown below the serial port is assigned to “COM1”. Port settings for

this port do not need to be setup here; they will be setup later via the Linux “Minicom” utility.

WARNING!

Using a COM port greater than 9 will not work!

 Close the “Device Manager” dialog box, but remember the COM port number used.

August 31, 2017 Page 22

 After the previous VirtualBox “Import” operation was performed, this screen should appear. Click

on the “Settings” icon as shown here:

August 31, 2017 Page 23

 When the “Grayhill 3Dxx Linux Qt … -Settings” dialog box appears, click on the “Serial Ports”

item on the left column as shown:

August 31, 2017 Page 24

 On the “Port 1” tab, make sure that the “Enable Serial Port” box is checked and leave the “Port

Number:” box set to “COM1” no matter what COM port is being used. Set the “Port Mode:” to

“Host Device” and in the “Port/File Path:” enter the COM port name and number from the

previous “Device Manager” step. An example is shown below. When these settings are correct

click on the “OK” button.

August 31, 2017 Page 25

Starting Linux Development Environment from VirtualBox
 When focus returns to this screen, click on the big, green “Start: arrow.

 If any messages such as the ones shown below appear when Linux first starts, click on the

icon to prevent these messages from appearing again.

August 31, 2017 Page 26

Updating Qt Development Environment
 Launch a Terminal Command Window by clicking once on the icon shown here:

 In the terminal window type the following command:

o /media/sf_vmshare/UpdateQt.sh

 This will run a script that will update some support libraries and include files and will update the

two Qt demonstration programs. A sample is shown below, but more messages may be output as

files are updated. Note that this script only updates a file if it is newer than the existing copy. The

“Update... completely successfully” output shows that the update script worked.

 Enter “exit” command to close terminal window.

August 31, 2017 Page 27

Configuring 3Dxx Display for Qt Development
 In order to complete the setup of the Qt development environment for the 3Dxx Display hardware,

the IP address assigned to the 3Dxx Display must be determined. Also, some other items on the

3Dxx Display must be configured so that it can operate properly with Qt. In order to perform these

tasks, it will be necessary to connect the Ethernet on the 3Dxx Display to the same network as the

development PC. (Refer to the first item in the section Installation Overview for more details on

performing the hardware connection). The Ethernet network the 3Dxx Display is connected to

must provide a DHCP server that will automatically assign an IP address to the 3Dxx Display.

 The 3Dxx Display serial port must also be connected to a serial port on the development PC.

(Refer to section Installation Overview for more details).

 Determine the serial port device name to use for the Linux Minicom serial communications

program depending on how the 3Dxx Display serial port is connected to the development PC. If

using a built-in serial port on the development PC, then remember that the serial port device name

will be “/dev/ttyS0”. If using a USB to serial port adapter, then remember that the serial port

device name will be “/dev/ttyUSB0”.

 Only if using the USB to serial port adapter: it must be activated at this time by clicking on the

“Devices” menu option at the top of the VirtualBox screen. Then select “USB” and click on the

USB to serial port adapter device name in order to select it. A sample is shown here (the USB

device name may be different than shown):

August 31, 2017 Page 28

 Right-click on the “Minicom” icon as shown below and then left-click on “Properties”.

August 31, 2017 Page 29

 Click in the box labeled “Command:” and use arrow or end keys to move to the end of the

command line. Make sure that the device name as determined above is entered at the end of the

string. Then click on the “Close” button. This sample shows setting the device name to

“/dev/ttyUSB0”: Do not change any other parameters on the command line. The command line is

typically set to:

gnome-terminal -t Minicom --hide-menubar -x minicom -c on -D /dev/ttyS0

August 31, 2017 Page 30

 Double-click on the Minicom desktop icon to start the program. The Minicom window should

look like this when it first starts:

August 31, 2017 Page 31

 Make sure that the 3Dxx Display is powered up and press the “Enter” key. A “ghiimx6

login:” prompt should appear as shown below. If the 3Dxx Display was just powered up, then

many startup messages may appear as well, but when they are done, pressing the “Enter” key

should produce a “ghiimx6 login:” prompt as shown.

August 31, 2017 Page 32

 At the “ghiimx6 login:” prompt enter “root” (no password is required).

 The 3Dxx Display internal flash file system is configured to be read-only so that the system boots

up faster and to protect the file system from corruption. In order to download and test files from

the Qt development environment, this internal flash file system must be set to read-write mode.

This must be done using this command:

o mount -o remount,rw /

This setting only remains in effect until the next time the 3Dxx Display is rebooted. There are

instructions at the end of this document that describe how to set the 3Dxx Display flash file system

to read-write mode on boot-up. The special 3Dxx configuration script that will be run in a few

steps will use this technique to configure the 3Dxx Display file system to be in read-write mode to

make Qt development more convenient.

CAUTION!

It is not recommended to leave the 3Dxx Display flash file system in read-

write mode on fielded units because this may result in file system

corruption and slower boot-up times.

 Enter this command to find the 3Dxx Display Ethernet IP address:
o ifconfig eth0

The IP address of the 3Dxx Display is after the tag “inet addr:” and it is circled in red in the

example output shown below.

 If the tag “inet addr:” is not present, then enter these two commands and try the “ifconfig

eth0” command again.

o ifdown eth0

o ifup eth0

In this example the IP address is 192.168.40.51. Make note of this IP address for the next setup

step.

August 31, 2017 Page 33

 Launch a Terminal Command Window by clicking once on the icon shown here:

August 31, 2017 Page 34

 In the terminal window type the following command:
o gedit /etc/hosts

This will open the IP address configuration file for the Linux system in a text editor program so

that the IP address of the 3Dxx Display can be configured. Here is a sample:

 Enter the 3Dxx IP address on the line marked “gmd”. This will enable Ethernet access to the 3Dxx

Display by using the hostname “gmd”.

 Click on the “Save” button on the editor to the save the changes made to the IP address. Then

close the editor window, but leave the terminal window open for the next step.

August 31, 2017 Page 35

 In the terminal window type the following command:
o /media/sf_vmshare/setup3Dxx.sh

This will configure the 3Dxx Display for operation with the Qt development environment. This

script will work for Models 3D50, 3D70, and 3D2104. When this script starts a message similar to

this will appear:

Just enter “yes” to continue.

 The script will do a reboot of the display and will require about five minutes to run. It will output

this message if everything works correctly:
setup3Dxx completed successfully

If this message does not appear, the problem must be corrected before continuing.

 Close the terminal window after the script finishes successfully by entering “exit” command.

August 31, 2017 Page 36

Choosing a 3Dxx Qt Widget Demo Project
Qt Widget demonstration projects are provided for each of the 3Dxx Displays. There is a file in each

demonstration program called “ghwrapper.cpp”. This file is a focal point for the demonstration program’s

operation and in the very beginning of this file are comments explaining how the demonstration program

works.

This table compares the features of the demonstration programs:

Program Name ghqtdemo gh7indemo gh10indemo

Target Display Model 3D50 Model 3D70 Model 3D2104

Orientation Portrait Landscape Landscape

Real Time Clock setting Yes Yes Yes

CAN input Yes Yes Yes

CAN output No Yes Yes

Touch Screen tap input Yes Yes Yes

Touch Screen Swipes Yes Yes Yes

Digital Inputs shown 4 4 4

Digital Outputs shown 4 4 4

Video inputs shown 2 3 3

Buzzer demo No Yes Yes

Audio Output demo No Yes No

Analog Input demo No Yes No

Note that Qt-4.8.6 can run in portrait or landscape mode and so either the “ghqtdemo” or the

“gh7indemo” demonstration program can run under Qt-4.8.6.

For now programs running under Qt-5.6.2 can only operate in native landscape mode, so only the

“gh7indemo” and “gh10indemo” programs can be run under Qt-5.6.2.

There will be one set of instructions for explaining how to configure and run either the “ghqtdemo” or the

“gh7indemo”demonstration programs under Qt-4.8.6 and the desktop environment (which uses Qt-5.5.1).

There will be a separate set of instructions that will explain how to configure and run the “gh7indemo”

program using Qt-5.6.2.

August 31, 2017 Page 37

Configure a 3Dxx Demo Project to Build and Run (Qt-4.8.6)
These instructions explain how to configure one of the demonstrations programs to run on a 3Dxx

Display using Qt-4.8.6 or on the development environment desktop using Qt-5.5.1. These instructions are

applicable to demonstration programs “ghqtdemo” and “gh7indemo”. The screen shots shown below are

for the “ghqtdemo” demonstration program, but in certain places things will need to be done differently

for the “gh7indemo” demonstration program as will be explained.

These kit configuration instructions have already been performed on the “ghqtdemo” and “gh7indemo”

programs provided in the preconfigured Qt development environment. These instructions are provided

here to aid in understanding how to setup a new project.

 If not already started, start the Qt Creator by clicking on the “Applications” word in the upper left-

hand corner of the Linux window and then navigating through “Programming” and then clicking

on the “Qt Creator …” item as shown here:

August 31, 2017 Page 38

 From “Qt Creator” main window click on “Open Project” button as shown here:

 An “Open File” dialog window will appear. Navigate to the 3Dxx Demo project’s “.pro” file as

shown in the example below and then click on “Open” button. The example shown below is for

“ghqtdemo”; for “gh7indemo”, navigate to folder “gh7indemo” and open file “gh7indemo.pro”.

August 31, 2017 Page 39

 If the “ghqtdemo.pro.user” file is missing, which is normal if the project has never been opened

before, then a “Configure Project” dialog will appear. If this dialog doesn’t appear, then jump

ahead to the step where the “Projects” icon is selected.

 If the “Configure Project” dialog does appear, then check boxes next to “Desktop Qt 5.5.1 GCC

32-bit” and “Qt-4.8.6-3Dxx” and uncheck box next to any other kits such as “Qt-5.6.2-3Dxx”.

Then click on “Details” button to the right of the “Desktop Qt 5.5.1 GCC 32-bit” and “Qt-4.8.6-

3Dxx” kits.

August 31, 2017 Page 40

 With the “Details” showing for the “Desktop Qt 5.5.1 GCC 32-bit” and “Qt-4.8.6-3Dxx” kits,

make sure that the boxes next to “Debug” are checked and that the boxes next to “Release” are

unchecked as shown below.

 When all is correct click on “Configure Project” button.

August 31, 2017 Page 41

 On the main “Qt Creator” window click on the “Projects” icon on the left side of the window as

shown here:

August 31, 2017 Page 42

 If the kits shown below do not appear, click on the “Add Kit” button to add the kit that is missing.

 On the “Projects” screen click on the “Run” option under the “Desktop Qt 5.5.1 GCC 32-bit” kit.

 Click on the “Browse” button to the right of the “Working Directory” box.

August 31, 2017 Page 43

 When the “Select Working Directory” dialog appears, navigate to the folder

“/home/ghguest/ghqtdemo” and then click on the “Open” button. For the “gh7indemo” program

navigate to the folder “/home/ghguest/gh7indemo” instead.

August 31, 2017 Page 44

 Next click on the “Build” option under the “Qt-4.8.6-3Dxx” kit.

 Click on the “Details” button to the right of the “qmake:” box under the “Build Steps” group.

 In the “Additional arguments:” box type “hw_present=3D50” as shown below. For the

“gh7indemo” program enter “hw_present=3D70” instead.

 Next click on the “Run” option under the “Qt-4.8.6-3Dxx” kit. Then scroll down to the “Run”

area.

 In the box labeled “Arguments:” type the appropriate entry for the chosen demo program:

ghqtdemo -qws -display transformed:rot270

gh7indemo -qws -display transformed:rot0 –display LinuxFb:/dev/fb1

The items for the “Arguments:” box shown in the table above show two very important pieces of

information about how to set up a Qt-4.8.6 program. (This information is not applicable to Qt-5.6.2).

August 31, 2017 Page 45

First consider the “rot270” and “rot0” items. The “rot270” argument sets up the display for portrait

mode and the “rot0” argument sets up the display for landscape mode. If the display output is to be

flipped 180 degrees it is also possible to specify “rot90” or “rot180”. Next consider the “-display

LinuxFb:/dev/fb1” argument. This argument tells Qt to send its graphics output to frame buffer 1

instead of the default frame buffer 0. This is required if trying to do graphic overlays on the camera

displays. See the section on camera programming for more information.

 In the box labeled “Working directory:” type the appropriate entry for the chosen demo program:

ghqtdemo /home/demo

gh7indemo /home/demo7in

August 31, 2017 Page 46

 Next click on the “File” menu option in the upper left corner and click on “Save All” as shown

here to save the project configurations:

August 31, 2017 Page 47

Build and Run 3Dxx Demo Project Desktop Version (Qt-5.5.1)
 The desktop version can be built by first selecting the “Desktop Qt 5.5.1 GCC 32-bit” item as

shown below:

August 31, 2017 Page 48

 Next select the “Rebuild All” item under the “Build” menu item as shown here:

 Click on the “Compile Output” and “Issues” selectors on the bottom of the Qt Creator window to

check for error messages and problems.

August 31, 2017 Page 49

 The desktop version can now be run by clicking on the big green “Run” arrow on the lower left

corner of the Qt Creator window.

 Click on the “Application Output” item on the bottom row to view application output.

 Click on red square on “Application Output” window to stop application.

August 31, 2017 Page 50

Build and Debug 3Dxx Demo Project Target Version (Qt-4.8.6)
 The Qt-4.8.6 version of the 3Dxx demo project can be built by first selecting the “Qt-4.8.6-3Dxx”

item as shown below:

 Next select the “Rebuild All” item under the “Build” menu item as shown here:

August 31, 2017 Page 51

 Click on the “Compile Output” and “Issues” selectors on the bottom of the Qt Creator window to

check for error messages and problems.

August 31, 2017 Page 52

 The Qt-4.8.6-3Dxx Demo Project Target version is now ready to run.

 Set a breakpoint in the code by clicking on the “Edit” option on the left hand side of the Qt

Creator window. Then click on the expansion arrow next to “Sources”.

 Double click on the “ghwrapper.cpp” file in order to open it in the editor screen to the right.

August 31, 2017 Page 53

 Scroll down and select a line in the source code and then press the “F9” key to toggle on a

breakpoint. An example is shown here:

 Make sure that 3Dxx Display is powered up and that its Ethernet connection to the Qt host is

working.

 Start debugging by clicking on the “Start Debugging” arrow as shown here or press the “F5” key:

August 31, 2017 Page 54

 Qt will download the executable to the target along with any necessary support files and begin

execution.

 Execution will stop when breakpoint is reached. At that time the Qt Creator window will look

something like this:

 Execution can be continued by pressing the “F5” key.

 Execution can be terminated by clicking on the red stop square (highlighted by red arrow in above

screen shot) on the “Application Output” window.

August 31, 2017 Page 55

Configure a 3Dxx Demo Project to Build and Run (Qt-5.6.2)
These instructions explain how to configure the “gh7indemo” program to run on a 3Dxx Display

using Qt-5.6.2. The instructions are also applicable to demonstration program “gh10indemo”, with

noted differences. The example and screen shots shown below are for the “gh7indemo”

demonstration program. This configuration procedure is very similar to one described in section

Configure a 3Dxx Demo Project to Build and Run (Qt-4.8.6) and assumes that those instructions

have already been completed.

 Open the “gh7indemo” project in “Qt Creator”.

 On the main “Qt Creator” window click on the “Projects” icon on the left side of the window.

 On the “Projects” screen click on the “Add Kit” option and select the “Qt-5.6.2-3Dxx” kit.

 Click on the “Build” button under the “Qt-5.6.2-3Dxx” kit and then select the “Release”

configuration as shown here:

August 31, 2017 Page 56

 Then click on the “Remove” button to remove the “Release” configuration..

August 31, 2017 Page 57

 Click on the “Details” button to the right of the “qmake:” box under the “Build Steps” group. In

the “Additional arguments:” box type “hw_present=3D70” as shown below.

 NOTE: for the gh10indemo program, use hw_present=3D2104 for the “Additional arguments”.

August 31, 2017 Page 58

 Next click on the “Run” option under the “Qt-5.6.2-3Dxx” kit and scroll down to the “Run” area.

 In the box labeled “Working directory:” type “/home/demo7in”.

(for the gh10indemo , type “/home/demo10in”)

August 31, 2017 Page 59

 Next click on the “File” menu option in the upper left corner and click on “Save All” as shown

here to save the project configurations:

August 31, 2017 Page 60

Build and Run 3Dxx Demo Project Target Version (Qt-5.6.2)
 The Qt-5.6.2 version of the 3Dxx demo project can be built by first selecting the “Qt-5.6.2-3Dxx”

item as shown below:

 Next select the “Rebuild All” item under the “Build” menu item as shown here:

August 31, 2017 Page 61

 Click on the “Compile Output” and “Issues” selectors on the bottom of the Qt Creator window to

check for error messages and problems.

August 31, 2017 Page 62

 The Qt-5.6.2-3Dxx Demo Project Target version is now ready to run.

 The Qt-5.6.2-3Dxx Demo Project Target version can now be run by clicking on the big green

“Run” arrow on the lower left corner of the Qt Creator window.

 Click on the “Application Output” item on the bottom row to view application output.

 Click on red square on “Application Output” window to stop application.

 The “gh7indemo” and “gh10indemo” demonstration programs include a “QML Demo” button on

the “Settings” screen; however, this button will just exit the Qt program when run on the 3Dxx

target. In order to make this button work, the QML demonstration program must be loaded

separately on the 3Dxx target and the demonstration program must be launched using a script as

shown below.

August 31, 2017 Page 63

For gh7indemo:
Loop to run QML demo from Qt demo

while true; do

 /home/demo7in/gh7indemo &> /run/qt.log

 /home/samegame/samegame &> /run/qml.log

done

For gh10indemo:
Loop to run QML demo from Qt demo

while true; do

 /home/demo10in/gh10indemo &> /run/qt.log

 /home/samegame/samegame &> /run/qml.log

done

August 31, 2017 Page 64

Build and Run QML Demonstration Program (Qt-5.6.2)
This describes how to build and run the QML demonstration program “Samegame”.

 From Qt Creator open the “~/Samegame/samegame.pro” project.

 Select the desired kit, either “Qt-5.6.2-3Dxx” or “Desktop Qt 5.5.1 GCC 32-bit”.

 Click on “Build->Rebuild All” to build program.

 Click on green arrow “Run” button to run program.

August 31, 2017 Page 65

Setting up 3Dxx Qt Program to Run at Boot Up
Tis describes how to configure one of the demo programs to start automatically when the 3Dxx

Display is powered up and not connected to the Qt development system. Using this example any Qt

program can be configured to run automatically at boot up.

 There is a launch script provided for each demo program. Using the information below, select

the correct “scp” copy command to copy the desired script to the target 3Dxx Display. The

“scp” command is entered from a terminal window in the Linux development environment and

assumes that the Ethernet link to the target 3Dxx Display is working and configured to use the

host name “gmd”.

o Demo Program: ghqtdemo

 Orientation: Portrait

 Sends graphics to fb0; no graphics overlay for camera

 “scp” copy command:

scp /media/sf_vmshare/3Dxx_launchqtdemo root@gmd:/etc/init.d/launchqtdemo

o Demo Program: gh7indemo

 Orientation: Landscape

 Sends graphics to fb1; can do graphics overlay for camera

 “scp” copy command:

scp /media/sf_vmshare/3Dxx_launchqt7indemo root@gmd:/etc/init.d/launchqt7indemo

o Demo Program: gh10indemo

 Orientation: Landscape

 Sends graphics to fb1; can do graphics overlay for camera

 “scp” copy command:

scp /media/sf_vmshare/3Dxx_launchqt10indemo

root@gmd:/etc/init.d/launchqt10indemo

 Next a link to the launch script must be placed in the directory “/etc/rc.d” on the target 3Dxx

Display. This is done by entering the correct command on the 3Dxx Linux console using the

“Minicom” application. (The section Configuring 3Dxx Display describes how to launch

“Minicom”.) Note that the order in which the links appear in the directory “/etc/rc.d” controls

the order in which the various applications are started at boot up. The example shows the

recommended ordering for the fastest possible boot up of the Qt application.

o Demo Program: ghqtdemo

 Link command entered on “Minicom” console:

ln -s /etc/init.d/launchqtdemo /etc/rc.d/S14qtdemo

 Result (get listing with command: “ls -1l /etc/rc.d”):

August 31, 2017 Page 66

o Demo Program: gh7indemo

 Link command entered on “Minicom” console:

ln -s /etc/init.d/launchqt7indemo /etc/rc.d/S12qt7indemo

 Result (get listing with command: “ls -1l /etc/rc.d”):

o Demo Program: gh10indemo

 Link command entered on “Minicom” console:

ln -s /etc/init.d/launchqt10indemo /etc/rc.d/S12qt10indemo

 Result (get listing with command: “ls -1l /etc/rc.d”):

In the above directory listings observe that the link for the “S16ghvehicleapp” item is shown in red. This

is because the target for this link was renamed to “launchghvehicleappXX” and this “broke” the link.

Since this link is “broken”, this item (which is the VUI Builder© application) will not be run at boot up.

This is a convenient way to switch what application is to be started at boot up. Just rename the launch

script located in the directory “/etc/init.d”.

CAUTION!

Do not try to launch multiple Qt applications at boot up or try to launch the ghvehicleapp

application along with a Qt application as they will conflict with one another.

NOTE

When switching from running one application to another, even between Qt applications, it

is a good idea to do a reboot of the 3Dxx Display in between to make sure that the

hardware is properly reset. This can be done by entering the “reboot” command on the

3Dxx Display Linux console..

August 31, 2017 Page 67

Interfacing 3Dxx Hardware from QT Software

The 3Dxx Display contains the following custom component interfaces:

 LCD

 LCD Backlight

 Camera driver

 CAN driver

 Digital I/O driver

 Analog Input driver (Model 3D70 only)

 Buzzer (Models 3D70, 3D2104)

 Audio Output (Model 3D70 only)

This section explains how to access the functionality of these components. The programming interfaces

and provided API functions are covered, with the syntax and parameters defined. Sample code is also

provided where appropriate.

LCD

The Grayhill 3Dxx Series Display uses a 16 bit per pixel LCD screen. The pixel dimensions of various

3Dxx Display products are should in the section Supported Hardware Products. The default orientation of

the frame buffer is landscape mode (wider pixel dimension is in horizontal direction).

The following only applies to using Qt-4.8.6:

The frame buffer can be rotated to portrait orientation and can even be flipped upside down by using

the “-display transformed:rot” parameter when launching the Qt application. Setting of this parameter

when configuring a Qt project for development and debug is shown in section Configure a 3Dxx Demo

Project to Build and Run (Qt-4.8.6). In order to set this parameter when launching a Qt application at

boot up, examine the launch scripts discussed in the section Build and Run QML Demonstration

Program (Qt-5.6.2)

This describes how to build and run the QML demonstration program “Samegame”.

 From Qt Creator open the “~/Samegame/samegame.pro” project.
Select the desired kit, either “Qt-5.6.2-3Dxx” or “Desktop Qt 5.5.1 GCC 32-bit”.

 Click on “Build->Rebuild All” to build program.

 Click on green arrow “Run” button to run program.

Setting up 3Dxx Qt Program to Run at Boot Up.

Images can be displayed on frame buffer 0 or 1 using standard Qt API. Which frame buffer a Qt

application uses is set by the presence or absence of the parameter “-display LinuxFb:/dev/fb1” when

launching the Qt application. The Qt application may not switch frame buffers once it starts. Setting

of this parameter when configuring a Qt project for development and debug is shown in section

Configure a 3Dxx Demo Project to Build and Run (Qt-4.8.6). In order to set this parameter when

launching a Qt application at boot up, examine the launch scripts discussed in the section Build and

Run QML Demonstration Program (Qt-5.6.2)

August 31, 2017 Page 68

This describes how to build and run the QML demonstration program “Samegame”.

 From Qt Creator open the “~/Samegame/samegame.pro” project.
Select the desired kit, either “Qt-5.6.2-3Dxx” or “Desktop Qt 5.5.1 GCC 32-bit”.

 Click on “Build->Rebuild All” to build program.

 Click on green arrow “Run” button to run program.

Setting up 3Dxx Qt Program to Run at Boot Up.

LCD Backlight

The LCD Backlight setting is a value between 0 and 100 inclusive.

The brightness value can be set in the file /sys/class/backlight/pwm-backlight.0/brightness

Sample Code:

int value = 80;

QFile file("/sys/class/backlight/pwm-backlight.0/brightness");

if (file.open(QIODevice::WriteOnly | QIODevice::Text))

{

 QTextStream out(&file);

 out << value;

 file.close();

}

Camera Driver Interface

The Grayhill 3Dxx Display device can contain multiple camera inputs. NTSC and PAL format video

inputs are supported by modifying the camera input sensor parameters. The camera output can be

displayed on the LCD. The following camera display parameters can be modified:

 Window parameters – window size and window position

 Color parameters – brightness, contrast, saturation and hue

 Rotation

 Input sensor parameters – provides support for NTSC and PAL formats

 Camera output to LCD foreground or background with color key

Camera output is displayed at 30fps.

Note: Only one camera input can be active at a time.

Interface:

The Qt application can interface with the Camera driver using the Camera class.

Data Types:

typedef struct _SENSORPARAMS // Must be set according to camera input type

{ // NTSC PAL

 unsigned int top; // 4 5

 unsigned int left; // 0 4

 unsigned int height; // 480 567

 unsigned int width; // 640 640

} SENSORPARAMS, *PSENSORPARAMS;

August 31, 2017 Page 69

#define FOREGROUND (1)

#define BACKGROUND (0)

// These are the only allowed values for VIDEO_COLOR_KEY_xxx:

#define VIDEO_COLOR_KEY_BLACK (0x00000000)

#define VIDEO_COLOR_KEY_RED (0x00FF0000)

#define VIDEO_COLOR_KEY_GREEN (0x0000FF00)

#define VIDEO_COLOR_KEY_BLUE (0x000000FF)

#define VIDEO_COLOR_KEY_YELLOW (0x00FFFF00)

#define VIDEO_COLOR_KEY_CYAN (0x0000FFFF)

#define VIDEO_COLOR_KEY_MAGENTA (0x00FF00FF)

#define VIDEO_COLOR_KEY_WHITE (0x00FFFFFF)

typedef struct _DISPLAYPARAMS

{

 unsigned int top; // top left window y-coordinate

 unsigned int left; // top left window x-coordinate

 // (must be divisible by 4)

 unsigned int height; // window vertical size

 unsigned int width; // window horizontal size

 // NOTE: top + height must not exceed height of display

 // and left + width must not exceed display width

 unsigned int rotate; // 0-7, see below

 unsigned int fg; // FOREGROUND or BACKGROUND + VIDEO_COLOR_KEY_xxx

} DISPLAYPARAMS, *PDISPLAYPARAMS;

The camera output always operates in native landscape mode. Use the following rotation values to support

other display and camera orientations:

Value Rotation

0 No rotation

1 Vertical flip

2 Horizontal flip

3 180

4 90 right

5 90 right with vertical flip

6 90 right with horizontal flip

7 90 left

#define HUE_CODE_00 (0x00)

#define HUE_CODE_7F (0x7F)

#define HUE_CODE_80 (0x80)

typedef struct _COLORPARAMS

{

 unsigned int brightness; // 0-255

 unsigned int saturation; // 0-255

 unsigned int hue; // HUE_CODE_00, HUE_CODE_7F, or HUE_CODE_80

August 31, 2017 Page 70

 unsigned int contrast; // 0-255

} COLORPARAMS, *PCOLORPARAMS;

Function Prototypes:

Camera::Camera

Camera class constructor

Syntax

Camera:: Camera (int camnum, int fbdev = FB_DEV_0);

Parameters

int camnum

 [in]

 Camera Number. Valid range 1-2 for Model 3D50, 1-3 for Model 3D70, 1-4 for Model 3D2104

#define FB_DEV_0 (0) // GRAPHICS being sent to /dev/fb0

#define FB_DEV_1 (1) // GRAPHICS being sent to /dev/fb1

int fbdev

 [in]

 The "fbdev" value must indicate whether the GRAPHICS are being sent to

fb0 or fb1. When GRAPHICS are being sent to fb0, then video will be sent to

fb1 and only foreground mode is allowed. This is the default assumed if

"fbdev" is missing.

If GRPAHICS are being sent to fb1, then video will be sent to fb0 and both

foreground and background modes are supported. In order to send GRAPHICS to

fb1, add this parameter to the command line that launches Qt: -display LinuxFb:/dev/fb1

Return Value

none

Camera::setdisplayparams

Sets the following display window parameters

 origin

 window size

 rotation

 foreground or background with color key (When using background mode the camera video only

shows through where the graphics data is set to the color that matches the specified color key.

Graphics of any other color will appear on top of the camera video image.)

Syntax

int Camera::setdisplayparams(PDISPLAYPARAMS p);

Parameters

PDISPLAYPARAMS p

August 31, 2017 Page 71

 [in]

 refer to DISPLAYPARAMS structure

Return Value

int

0 indicates success, -1 indicates failure

Camera::setcolorparams

Sets the following camera color parameters

 Brightness

 Saturation

 Contrast

 Hue

Syntax

int Camera::setcolorparams(PCOLORPARAMS p);

Parameters

PCOLORPARAMS p

 [in]

 refer to COLORPARAMS structure

Return Value

int

0 indicates success, -1 indicates failure

Camera::setsensorparams

Sets the camera sensor parameters.

Syntax

int Camera::setsensorparams(PSENSORPARAMS psensor);

Parameters

PSENSORPARAMS psensor

 [in]

 refer to SENSORPARAMS structure

Return Value

int

always returns 0

Camera::show

Enables or disables the camera

Syntax

int Camera::show(int enable);

August 31, 2017 Page 72

Parameters

int enable

 [in]

 1 = enable, 0 = disable

Return Value

int

0 indicates success, -1 indicates failure

Required Files:

Header File: camera.h

Link Library : libghdrv.so

Sample Code:

#include “camera.h”

COLORPARAMS color;

DISPLAYPARAMS disp;

int cameranum = 1; // camera input 1

Camera cam(cameranum);

disp.top = 0;

disp.left = 80;

disp.height = 480;

disp.width = 640;

disp.rotate = 4; // rotate 90 degree right

disp.fg = FOREGROUND;

// configure display parameters

cam.setdisplayparams(&disp);

// start camera

cam.show(1);

// change color parameters

color.brightness = 50;

color.saturation = 128;

color.contrast = 128;

color.hue = 0;

// configure color parameters

cam.setcolorparams(&color);

....

// stop l+camera

cam.show(0);

August 31, 2017 Page 73

CAN Driver Interface

The 3D50 and 3D70 Displays includes two CAN controller modules. Available CAN ports are CAN1

and CAN2. The 3D2104 Display includes three CAN controller modules. Available CAN ports are

CAN1, CAN2, and CAN3. The CAN controller supports both standard and extended frames.

Interface:

The qt demo application can interface with the CAN bus driver using the CAN class.

Data Types:

/* special flag bits for the CAN_ID */

#define CAN_EFF_FLAG 0x80000000U /* EFF flag (add to ID to activate 29-bit ID) */

#define CAN_RTR_FLAG 0x40000000U /* remote transmission request */

#define CAN_ERR_FLAG 0x20000000U /* error frame */

struct _CANMSG

{

unsigned int ID;

unsigned int Length; // Data Length Code of the Msg (0..8)

unsigned char Data[8];

};

typedef struct _CANMSG CANMSG, *PCANMSG;

Function Prototypes:

CAN::CAN

CAN class constructor

Syntax

CAN::CAN(int num);

Parameters

int num

 [in]

 CAN Port Number. Valid range 1-2 for Models 3D50, 3D70; 1-3 for Model 3D2104

Return Value

none

CAN::OpenPort

Opens the CAN socket

Syntax

int CAN::OpenPort(void);

August 31, 2017 Page 74

Parameters

none

Return Value

int

non-zero value indicates success, -1 indicates failure

CAN::WritePort

Writes a single CAN frame to the CAN port.

Syntax

int CAN::WritePort(PCANMSG TxMsg);

Parameters

PCANMSG TxMsg

 [in]

 Contains the CAN frame to be written

Return Value

int

0 indicates success, -1 indicates failure

CAN::ReadPort

Attempts to read a single CAN frame from the CAN port. Note that the CAN socket is configured to be

non-blocking, so calls to ReadPort will return even if there is no data.

Syntax

int CAN::ReadPort(PCANMSG RxMsg);

Parameters

PCANMSG RxMsg

 [out]

 Contains the CAN frame received

Return Value

int

contains the number of bytes read, -1 indicates failure

CAN::ClosePort

Closes the CAN socket

Syntax

void CAN::ClosePort(void);

Parameters

none

August 31, 2017 Page 75

Return Value

none

Required Files:

Header File: can.h

Link Library : libghdrv.so

Sample Code:

#include “can.h”

CANMSG TxMsg;

CANMSG RxMsg;

int bytesread = 0;

int cannum = 1; // CAN1

/* Init TX and RX message */

TxMsg.ID = 0x23;

TxMsg.Length = 8;

for (int i=0; i<8; i++)

 TxMsg.Data[i] = (0x11 * (i+1)); // fill random data

memset((void *)&RxMsg, 0, sizeof(CANMSG));

// CAN1

CAN can(cannum);

can.OpenPort();

can.WritePort(&TxMsg);

do

{

 bytesread = can.ReadPort(&RxMsg);

 // add delay

} while (bytesread != sizeof(CANMSG));

can.ClosePort();

August 31, 2017 Page 76

Digital I/O Driver Interface

The Model 3D50 Display, Model 3D70 Display, and Model 3D2104 Display each have four digital inputs

and four digital outputs, but they are configured differently and these differences will be explained. Each

device uses the same library calls to read the digital inputs and set the digital outputs.

On the 3D50 Five Inch Display Pin 4 on its connector is a dedicated input only pin. Pin 5 is a dedicated

output only pin. Pins 6, 7, and 8 are shared I/O pins that can be used to output a signal or input a signal.

On the Model 3D70 Seven Inch Display each of the four inputs are dedicated and so operate

independently of any output pins.

On the Model 3D2104 10.4 Inch Display all digital output pins are shared I/O pins that can be used to

output a signal or input a signal.

For a shared I/O pin to function as an input, the corresponding output must be set low.

The following table summarizes all of the digital I/O pins for each model:

Model 3D50 Pins Model 3D70 Pins Model 3D2104 Pins

Input 1 (Pin 4) Input 1 (Pin 4 Connector A) Input 1 or Output 1 (Pin 10)

Input 2 or Output 2 (Pin 6) Input 2 (Pin 8 Connector B) Input 2 or Output 2 (Pin 21)

Input 3 or Output 3 (Pin 7) Input 3 (Pin 9 Connector B) Input 3 or Output 3 (Pin 32)

Input 4 or Output 4 (Pin 8) Input 4 (Pin 10 Connector B) Input 4 or Output 4 (Pin 9)

Output 1 (Pin 5) Output 1 (Pin11 Connector B)

 Output 2 (Pin12 Connector B)

 Output 3 (Pin13 Connector B)

 Output 4 (Pin14 Connector B)

Interface:

A Qt application may set or get the digital I/O pin states by calling the appropriate C library function as

described below.

#define GHIOLIB_CH1 (0x01)

#define GHIOLIB_CH2 (0x02)

#define GHIOLIB_CH3 (0x03)

#define GHIOLIB_CH4 (0x04)

#define GHIOLIB_MAX_DIGITAL_IO (4)

#define GHIOLIB_DIG_IN_FLOAT (0)

#define GHIOLIB_DIG_IN_PULL_DN (1)

#define GHIOLIB_DIG_IN_PULL_UP (2)

#define GHIOLIB_RET_OK 0

#define GHIOLIB_RET_ERROR 1

#define GHIOLIB_RET_NOTSUPPORTED 2

ghiolib_setDigIncfg (Model 3D70 only)

August 31, 2017 Page 77

Sets input pin pull-up/pull-down configuration.

Syntax

int ghiolib_setDigIncfg(int ch, uint8_t config);

Parameters

int ch

 [in]

 Input pin to configure (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t config

[in]
 GHIOLIB_DIG_IN_FLOAT, GHIOLIB_DIG_IN_PULL_DN, or GHIOLIB_DIG_IN_PULL_UP

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

ghiolib_getDigIn

This function reads the state of an input pin.

Syntax

int ghiolib_getDigIn(int ch, uint8_t *value);

Parameters

int ch

 [in]

 Input pin to read (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t *value

[out]

 Returns 0 if input is low, else returns 1

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

ghiolib_getDigOut

Reads the current state of an output pin.

Syntax

int ghiolib_getDigOut(int ch, uint8_t *value);

Parameters

int ch

 [in]

 Output pin to read (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t *value

[out]

August 31, 2017 Page 78

 Returns 0 if output is set low, else returns 1

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

ghiolib_setDigOut

This function sets the current state of an output pin.

Syntax

int ghiolib_setDigOut(int ch, uint8_t value);

Parameters

int ch

 [in]

 Output pin to set (GHIOLIB_CH1, GHIOLIB_CH2, GHIOLIB_CH3, or GHIOLIB_CH4)

uint8_t value

[in]

 If 0 sets output pin low, else sets output pin high (Vbatt)

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

Required Files:

Header File: ghiolib.h

Link Library: libghiodrv.so

Sample Qt Code:

#include <QDebug>

// For access to ghiolib

typedef u_int16_t uint16_t;

typedef u_int8_t uint8_t;

#ifdef __cplusplus

extern "C" {

#endif

#include "ghiolib.h"

#ifdef __cplusplus

}

#endif

int channel;

uint8_t digValue;

int gpioOutput;

int gpioInput;

int gpioStatus;

August 31, 2017 Page 79

// Set inputs to pull down mode and read current inputs and outputs for each channel

gpioOutput = 0;

gpioInput = 0;

for (channel = 0; channel < GHIOLIB_MAX_DIGITAL_IO; channel++)

{

 // Set input to pull down mode

 gpioStatus = ghiolib_setDigIncfg(channel + 1, GHIOLIB_DIG_IN_PULL_DN);

 if ((GHIOLIB_RET_OK != gpioStatus) && (GHIOLIB_RET_NOTSUPPORTED != gpioStatus))

 {

 qDebug("ERROR (%d) doing ghiolib_setDigIncfg on channel: %d\n",

 gpioStatus, channel + 1);

 }

 // Read current output setting

 digValue = 0;

 gpioStatus = ghiolib_getDigOut(channel + 1, &digValue);

 if (GHIOLIB_RET_OK != gpioStatus)

 {

 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel: %d\n",

 gpioStatus, channel + 1);

 }

 else

 {

 if (1 == digValue)

 {

 gpioOutput |= (1 << channel);

 }

 }

 // Read current input

 digValue = 0;

 gpioStatus = ghiolib_getDigIn(channel + 1, &digValue);

 if (GHIOLIB_RET_OK != gpioStatus)

 {

 qDebug("ERROR (%d) doing ghiolib_getDigIn on channel: %d\n",

 gpioStatus, channel + 1);

 }

 else

 {

 if (1 == digValue)

 {

 gpioInput |= (1 << channel);

 }

 }

}

qDebug("GPIO initial output: 0x%x input: 0x%x\n", gpioOutput, gpioInput);

August 31, 2017 Page 80

Analog Inputs (Model 3D70 only)

The Model 3D70 Display has two analog inputs. Analog Input 1 is connected to Pin 4 on Connector B and

Analog Input 2 is connected to Pin 5 on Connector B. The Analog Inputs can be used to read resistance, voltage,

or current with respect to the analog return pin (pin 7 on Connector B).

Interface:

A Qt application may configure or read an analog input pin by calling the appropriate C library function

as described below.

#define GHIOLIB_CH1 (0x01)

#define GHIOLIB_CH2 (0x02)

#define GHIOLIB_MAX_ANALOG_IN (2)

#define GHIOLIB_ANALOG_5V (0)

#define GHIOLIB_ANALOG_1500OHM (1)

#define GHIOLIB_ANALOG_10V (2)

#define GHIOLIB_ANALOG_5000OHM (3)

#define GHIOLIB_ANALOG_20MA (4)

#define GHIOLIB_RET_OK 0

#define GHIOLIB_RET_ERROR 1

#define GHIOLIB_RET_NOTSUPPORTED 2

typedef struct _ADCVALUES

{

 uint16_t adcch;

 uint16_t adcvref;

 uint16_t adcstatus;

 uint16_t adcconfig;

} ADCVALUES, *PADCVALUES;

ghiolib_setADCcfg (Model 3D70 only)

This function configures an analog input for one of five different reading modes.

Syntax

int ghiolib_setADCcfg(int ch, uint8_t config);

Parameters

int ch

 [in]

 Input to configure (GHIOLIB_CH1 or GHIOLIB_CH2)

uint8_t config

[in]
GHIOLIB_ANALOG_5V, GHIOLIB_ANALOG_10V, GHIOLIB_ANALOG_1500OHM,

GHIOLIB_ANALOG_5000OHM, or GHIOLIB_ANALOG_20MA

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

August 31, 2017 Page 81

ghiolib_getADCIn (Model 3D70 only)

This function gets a reading from an analog input pin.

Syntax

int ghiolib_getADCin(int ch, PADCVALUES p);

Parameters

int ch

 [in]

 Input to read (GHIOLIB_CH1 or GHIOLIB_CH2)
PADCVALUES p

[out]

 Reading is returned in member “adcch” of this structure. Other items in this structure can be

ignored.

Return Value

int
GHIOLIB_RET_OK, GHIOLIB_RET_ERROR, or GHIOLIB_RET_NOTSUPPORTED

Required Files:

Header File: ghiolib.h

Link Library: libghiodrv.so

Sample Qt Code:

#include <QDebug>

// For access to ghiolib

typedef u_int16_t uint16_t;

typedef u_int8_t uint8_t;

#ifdef __cplusplus

extern "C" {

#endif

#include "ghiolib.h"

#ifdef __cplusplus

}

#endif

int channel = 0;

ADCVALUES analogData;

int gpioStatus;

// Set analog input 1 to read 0 to 10 volts

gpioStatus = ghiolib_setADCcfg(channel + 1, GHIOLIB_ANALOG_10V);

if (GHIOLIB_RET_OK != gpioStatus)

{

 qDebug("ERROR (%d) doing ghiolib_setADCcfg on channel: %d\n",

August 31, 2017 Page 82

 gpioStatus, channel + 1);

}

// Get current reading

gpioStatus = ghiolib_getADCin(channel + 1, &analogData);

if (GHIOLIB_RET_OK != gpioStatus)

{

 qDebug("ERROR (%d) doing ghiolib_getDigOut on channel: %d\n",

 gpioStatus, channel + 1);

}

qDebug("Reading from channel %d is %d millivolts\n", channel + 1, analogData.adcch);

August 31, 2017 Page 83

Buzzer (Models 3D70, 3D2104)

The Model 3D70 and 3D2104 Displays have an internal buzzer that can be sounded on command.

Interface:

A Qt application can turn the internal buzzer on or off by sending the proper number to the buzzer control

file.

Required Files:

Header File: none

Link Library: none

Sample Qt Code:

#include <QString>

#include <QDebug>

QFile buzzerFile;

bool buzzerFileOpen;

buzzerFile.setFileName("/sys/class/backlight/pwm-backlight.3/brightness");

buzzerFileOpen = buzzerFile.open(QIODevice::WriteOnly | QIODevice::Text);

if (false == buzzerFileOpen)

{

 qDebug("Error opening buzzer file\n”);

}

// To turn buzzer ON

if (true == buzzerFileOpen)
{

 QTextStream buzzerOut(&buzzerFile);
 buzzerOut << 10;

}

// . . .

// To turn buzzer OFF

if (true == buzzerFileOpen)
{

 QTextStream buzzerOut(&buzzerFile);
 buzzerOut << 0;

}

August 31, 2017 Page 84

Audio Output (Model 3D70 only)

The Model 3D70 Display has the ability to play an mp3 audio file and send the audio output to a

monaural line out (pins 1, AUDIO OUT, and 2, AUDIO RET, on the B connector).

Interface:

A Qt application can start playing an mp3 audio file and can stop the playing of the audio file using a

Linux utility called mpg123.

Required Files:

Header File: none

Link Library: none

Executable: mpg123 (normally installed on Model 3D70 Display)

Sample Qt Code:

// To play mp3 file “sounds.mp3”

// Note that by placing mp3 file in “images” folder, Qt will automatically

// download the mp3 file to the target with the other image files being used.

// Command shown to play mp3 file will first stop playing any mp3 file

// that may already be playing.

system("test `pidof mpg123` && kill `pidof mpg123` ;"

 "mpg123 -q images/sounds.mp3 &");

// To stop playing mp3 file (if any)

system("test `pidof mpg123` && kill `pidof mpg123`");

August 31, 2017 Page 85

Appendix A: VirtualBox Linux Passwords
 Password for user ghguest on Linux system: !admin!

 Password for user root on Linux system: !rty32999!

August 31, 2017 Page 86

Appendix B: Setting 3Dxx Flash File System R/W Mode
 To immediately set the 3Dxx Display file system to read-write mode enter this console command:

mount –o remount,rw /

 The above command only remains in effect until the next reboot and is usually stored in a script

file here: /home/writeablefs.

 To have the 3Dxx Display file system set to read-write mode on boot-up, edit the file /etc/init.d/rc-

once and add the above command to the end of this file just before the final “exit” command like

this:
…

…

…

case "$1" in

 start)

 do_start >&2

 ;;

 *)

 echo "Usage: $0 {start}" >&2

 exit 1

 ;;

esac

mount -o remount,rw /

exit 0

 To leave the 3Dxx Display file system set to read-only mode on boot-up, edit the file /etc/init.d/rc-

once and remove the “mount –o remout,rw /” line near the end of the file (or comment it out by

putting a “#” in column one of that line).

CAUTION!

It is not recommended to leave the 3Dxx Display flash file system in read-

write mode on fielded units because this may result in file system

corruption and slower boot-up times.

 Another way to have the 3Dxx Display file system set to read-write mode on boot-up, is to add a

link to the “writeablefs” script in the home directory like this:

ln –s /home/writeablefs /etc/rc.d/S03writeablefs

